亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, a quasi-sliding mode control (QSMC) based on MPC is proposed for the constrained continuous-time nonlinear system with external disturbances. The MPC problem is formulated relating to the design of QSMC, to generate the control input, which can imitate the control process of QSMC and guarantee the satisfaction of state and input constraints. Meanwhile, the cost function of MPC problem is reconstructed, in which the QSMC based on MPC can show better convergence rate by tuning the weight parameters. Finally, a simulation case is provided to demonstate the effectiveness of the proposed approach.

相關內容

A time-varying zero-inflated serially dependent Poisson process is proposed. The model assumes that the intensity of the Poisson Process evolves according to a generalized autoregressive conditional heteroscedastic (GARCH) formulation. The proposed model is a generalization of the zero-inflated Poisson Integer GARCH model proposed by Fukang Zhu in 2012, which in return is a generalization of the Integer GARCH (INGARCH) model introduced by Ferland, Latour, and Oraichi in 2006. The proposed model builds on previous work by allowing the zero-inflation parameter to vary over time, governed by a deterministic function or by an exogenous variable. Both the Expectation Maximization (EM) and the Maximum Likelihood Estimation (MLE) approaches are presented as possible estimation methods. A simulation study shows that both parameter estimation methods provide good estimates. Applications to two real-life data sets show that the proposed INGARCH model provides a better fit than the traditional zero-inflated INGARCH model in the cases considered.

Among many solutions to the high-dimensional approximate nearest neighbor (ANN) search problem, locality sensitive hashing (LSH) is known for its sub-linear query time and robust theoretical guarantee on query accuracy. Traditional LSH methods can generate a small number of candidates quickly from hash tables but suffer from large index sizes and hash boundary problems. Recent studies to address these issues often incur extra overhead to identify eligible candidates or remove false positives, making query time no longer sub-linear. To address this dilemma, in this paper we propose a novel LSH scheme called DB-LSH which supports efficient ANN search for large high-dimensional datasets. It organizes the projected spaces with multi-dimensional indexes rather than using fixed-width hash buckets. Our approach can significantly reduce the space cost as by avoiding the need to maintain many hash tables for different bucket sizes. During the query phase of DB-LSH, a small number of high-quality candidates can be generated efficiently by dynamically constructing query-based hypercubic buckets with the required widths through index-based window queries. For a dataset of $n$ $d$-dimensional points with approximation ratio $c$, our rigorous theoretical analysis shows that DB-LSH achieves a smaller query cost ${O(n^{\rho^*} d\log n)}$, where ${\rho^*}$ is bounded by ${1/c^{\alpha}}$ while the bound is ${1/c}$ in the existing work. An extensive range of experiments on real-world data demonstrates the superiority of DB-LSH over state-of-the-art methods on both efficiency and accuracy.

The stochastic control problem of optimal market making is among the central problems in quantitative finance. In this paper, a deep reinforcement learning-based controller is trained on a weakly consistent, multivariate Hawkes process-based limit order book simulator to obtain market making controls. The proposed approach leverages the advantages of Monte Carlo backtesting and contributes to the line of research on market making under weakly consistent limit order book models. The ensuing deep reinforcement learning controller is compared to multiple market making benchmarks, with the results indicating its superior performance with respect to various risk-reward metrics, even under significant transaction costs.

Mark-point dependence plays a critical role in research problems that can be fitted into the general framework of marked point processes. In this work, we focus on adjusting for mark-point dependence when estimating the mean and covariance functions of the mark process, given independent replicates of the marked point process. We assume that the mark process is a Gaussian process and the point process is a log-Gaussian Cox process, where the mark-point dependence is generated through the dependence between two latent Gaussian processes. Under this framework, naive local linear estimators ignoring the mark-point dependence can be severely biased. We show that this bias can be corrected using a local linear estimator of the cross-covariance function and establish uniform convergence rates of the bias-corrected estimators. Furthermore, we propose a test statistic based on local linear estimators for mark-point independence, which is shown to converge to an asymptotic normal distribution in a parametric $\sqrt{n}$-convergence rate. Model diagnostics tools are developed for key model assumptions and a robust functional permutation test is proposed for a more general class of mark-point processes. The effectiveness of the proposed methods is demonstrated using extensive simulations and applications to two real data examples.

Importance sampling (IS) is valuable in reducing the variance of Monte Carlo sampling for many areas, including finance, rare event simulation, and Bayesian inference. It is natural and obvious to combine quasi-Monte Carlo (QMC) methods with IS to achieve a faster rate of convergence. However, a naive replacement of Monte Carlo with QMC may not work well. This paper investigates the convergence rates of randomized QMC-based IS for estimating integrals with respect to a Gaussian measure, in which the IS measure is a Gaussian or $t$ distribution. We prove that if the target function satisfies the so-called boundary growth condition and the covariance matrix of the IS density has eigenvalues no smaller than 1, then randomized QMC with the Gaussian proposal has a root mean squared error of $O(N^{-1+\epsilon})$ for arbitrarily small $\epsilon>0$. Similar results of $t$ distribution as the proposal are also established. These sufficient conditions help to assess the effectiveness of IS in QMC. For some particular applications, we find that the Laplace IS, a very general approach to approximate the target function by a quadratic Taylor approximation around its mode, has eigenvalues smaller than 1, making the resulting integrand less favorable for QMC. From this point of view, when using Gaussian distributions as the IS proposal, a change of measure via Laplace IS may transform a favorable integrand into unfavorable one for QMC although the variance of Monte Carlo sampling is reduced. We also give some examples to verify our propositions and warn against naive replacement of MC with QMC under IS proposals. Numerical results suggest that using Laplace IS with $t$ distributions is more robust than that with Gaussian distributions.

We consider the problem of estimating the factors of a rank-$1$ matrix with i.i.d. Gaussian, rank-$1$ measurements that are nonlinearly transformed and corrupted by noise. Considering two prototypical choices for the nonlinearity, we study the convergence properties of a natural alternating update rule for this nonconvex optimization problem starting from a random initialization. We show sharp convergence guarantees for a sample-split version of the algorithm by deriving a deterministic recursion that is accurate even in high-dimensional problems. Notably, while the infinite-sample population update is uninformative and suggests exact recovery in a single step, the algorithm -- and our deterministic prediction -- converges geometrically fast from a random initialization. Our sharp, non-asymptotic analysis also exposes several other fine-grained properties of this problem, including how the nonlinearity and noise level affect convergence behavior. On a technical level, our results are enabled by showing that the empirical error recursion can be predicted by our deterministic sequence within fluctuations of the order $n^{-1/2}$ when each iteration is run with $n$ observations. Our technique leverages leave-one-out tools originating in the literature on high-dimensional $M$-estimation and provides an avenue for sharply analyzing higher-order iterative algorithms from a random initialization in other high-dimensional optimization problems with random data.

In a desired environmental protection system, groundwater may not be excluded. In addition to the problem of over-exploitation, in total disagreement with the concept of sustainable development, another not negligible issue concerns the groundwater contamination. Mainly, this aspect is due to intensive agricultural activities or industrialized areas. In literature, several papers have dealt with transport problem, especially for inverse problems in which the release history or the source location are identified. The innovative aim of the paper is to develop a data-driven model that is able to analyze multiple scenarios, even strongly non-linear, in order to solve forward and inverse transport problems, preserving the reliability of the results and reducing the uncertainty. Furthermore, this tool has the characteristic of providing extremely fast responses, essential to identify remediation strategies immediately. The advantages produced by the model were compared with literature studies. In this regard, a feedforward artificial neural network, which has been trained to handle different cases, represents the data-driven model. Firstly, to identify the concentration of the pollutant at specific observation points in the study area (forward problem); secondly, to deal with inverse problems identifying the release history at known source location; then, in case of one contaminant source, identifying the release history and, at the same time, the location of the source in a specific sub-domain of the investigated area. At last, the observation error is investigated and estimated. The results are satisfactorily achieved, highlighting the capability of the ANN to deal with multiple scenarios by approximating nonlinear functions without the physical point of view that describes the phenomenon, providing reliable results, with very low computational burden and uncertainty.

We consider the problem of online allocation (matching, budgeted allocations, and assortments) of reusable resources where an adversarial sequence of resource requests is revealed over time and allocated resources are used/rented for a stochastic duration, drawn independently from known resource usage distributions. This problem is a fundamental generalization of well studied models in online matching and resource allocation. We give an algorithm that obtains the best possible competitive ratio of $(1-1/e)$ for general usage distributions and large resource capacities. At the heart of our algorithm is a new quantity that factors in the potential of reusability for each resource by (computationally) creating an asymmetry between identical units of the resource. In order to control the stochastic dependencies induced by reusability, we introduce a relaxed online algorithm that is only subject to fluid approximations of the stochastic elements in the problem. The output of this relaxed algorithm guides the overall algorithm. Finally, we establish competitive ratio guarantees by constructing a feasible solution to an LP free system of constraints. More generally, these ideas lead to a principled approach for integrating stochastic and combinatorial elements (such as reusability, customer choice, and budgeted allocations) in online resource allocation problems.

Asymmetry along with heteroscedasticity or contamination often occurs with the growth of data dimensionality. In ultra-high dimensional data analysis, such irregular settings are usually overlooked for both theoretical and computational convenience. In this paper, we establish a framework for estimation in high-dimensional regression models using Penalized Robust Approximated quadratic M-estimators (PRAM). This framework allows general settings such as random errors lack of symmetry and homogeneity, or the covariates are not sub-Gaussian. To reduce the possible bias caused by the data's irregularity in mean regression, PRAM adopts a loss function with a flexible robustness parameter growing with the sample size. Theoretically, we first show that, in the ultra-high dimension setting, PRAM estimators have local estimation consistency at the minimax rate enjoyed by the LS-Lasso. Then we show that PRAM with an appropriate non-convex penalty in fact agrees with the local oracle solution, and thus obtain its oracle property. Computationally, we demonstrate the performances of six PRAM estimators using three types of loss functions for approximation (Huber, Tukey's biweight and Cauchy loss) combined with two types of penalty functions (Lasso and MCP). Our simulation studies and real data analysis demonstrate satisfactory finite sample performances of the PRAM estimator under general irregular settings.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司