亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of Dimension-Grouped MMMs (Gro-M$^3$s) for multivariate categorical data, which improve parsimony and interpretability. In Gro-M$^3$s, observed variables are partitioned into groups such that the latent membership is constant for variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we derive transparent identifiability conditions for both the unknown grouping structure and model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet Gro-M$^3$s to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through applications to a functional disability survey dataset and a personality test dataset.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 無監督 · 語義分割 · 分割 · 預訓練模型 ·
2023 年 4 月 6 日

Unsupervised semantic segmentation is a long-standing challenge in computer vision with great significance. Spectral clustering is a theoretically grounded solution to it where the spectral embeddings for pixels are computed to construct distinct clusters. Despite recent progress in enhancing spectral clustering with powerful pre-trained models, current approaches still suffer from inefficiencies in spectral decomposition and inflexibility in applying them to the test data. This work addresses these issues by casting spectral clustering as a parametric approach that employs neural network-based eigenfunctions to produce spectral embeddings. The outputs of the neural eigenfunctions are further restricted to discrete vectors that indicate clustering assignments directly. As a result, an end-to-end NN-based paradigm of spectral clustering emerges. In practice, the neural eigenfunctions are lightweight and take the features from pre-trained models as inputs, improving training efficiency and unleashing the potential of pre-trained models for dense prediction. We conduct extensive empirical studies to validate the effectiveness of our approach and observe significant performance gains over competitive baselines on Pascal Context, Cityscapes, and ADE20K benchmarks.

We propose a new approach to learned optimization where we represent the computation of an optimizer's update step using a neural network. The parameters of the optimizer are then learned by training on a set of optimization tasks with the objective to perform minimization efficiently. Our innovation is a new neural network architecture, Optimus, for the learned optimizer inspired by the classic BFGS algorithm. As in BFGS, we estimate a preconditioning matrix as a sum of rank-one updates but use a Transformer-based neural network to predict these updates jointly with the step length and direction. In contrast to several recent learned optimization-based approaches, our formulation allows for conditioning across the dimensions of the parameter space of the target problem while remaining applicable to optimization tasks of variable dimensionality without retraining. We demonstrate the advantages of our approach on a benchmark composed of objective functions traditionally used for the evaluation of optimization algorithms, as well as on the real world-task of physics-based visual reconstruction of articulated 3d human motion.

This study considers the control problem with signal temporal logic (STL) specifications. Prior works have adopted smoothing techniques to address this problem within a feasible time frame and solve the problem by applying sequential quadratic programming (SQP) methods naively. However, one of the drawbacks of this approach is that solutions can easily become trapped in local minima that do not satisfy the specification. In this study, we propose a new optimization method, termed CCP-based SQP, based on the convex-concave procedure (CCP). Our framework includes a new robustness decomposition method that decomposes the robustness function into a set of constraints, resulting in a form of difference of convex (DC) program that can be solved efficiently. We solve this DC program sequentially as a quadratic program by only approximating the disjunctive parts of the specifications. Our experimental results demonstrate that our method has a superior performance compared to the state-of-the-art SQP methods in terms of both robustness and computational time.

In Selk and Gertheiss (2022) a nonparametric prediction method for models with multiple functional and categorical covariates is introduced. The dependent variable can be categorical (binary or multi-class) or continuous, thus both classification and regression problems are considered. In the paper at hand the asymptotic properties of this method are developed. A uniform rate of convergence for the regression / classification estimator is given. Further it is shown that, asymptotically, a data-driven least squares cross-validation method can automatically remove irrelevant, noise variables.

Zero-shot quantization is a promising approach for developing lightweight deep neural networks when data is inaccessible owing to various reasons, including cost and issues related to privacy. By exploiting the learned parameters ($\mu$ and $\sigma$) of batch normalization layers in an FP32-pre-trained model, zero-shot quantization schemes focus on generating synthetic data. Subsequently, they distill knowledge from the pre-trained model (teacher) to the quantized model (student) such that the quantized model can be optimized with the synthetic dataset. However, thus far, zero-shot quantization has primarily been discussed in the context of quantization-aware training methods, which require task-specific losses and long-term optimization as much as retraining. We thus introduce a post-training quantization scheme for zero-shot quantization that produces high-quality quantized networks within a few hours. Furthermore, we propose a framework called \genie~that generates data suited for quantization. With the data synthesized by Genie, we can produce robust quantized models without real datasets, which is comparable to few-shot quantization. We also propose a post-training quantization algorithm to enhance the performance of quantized models. By combining them, we can bridge the gap between zero-shot and few-shot quantization while significantly improving the quantization performance compared to that of existing approaches. In other words, we can obtain a unique state-of-the-art zero-shot quantization approach.

We propose a multivariate probability distribution for categorical and ordinal random variables. To this end, we use the Grassmann distribution in conjunction with dummy encoding of categorical and ordinal variables. To realize the co-occurrence probabilities of dummy variables required for categorical and ordinal variables, we propose a parsimonious parameterization for the Grassmann distribution that ensures the positivity of probability distribution. As an application of the proposed distribution, we develop a factor analysis for categorical and ordinal variables and show the validity of the model using a real dataset.

Zero-inflated continuous data ubiquitously appear in many fields, in which lots of exactly zero-valued data are observed while others distribute continuously. Due to the mixed structure of discreteness and continuity in its distribution, statistical analysis is challenging especially for multivariate case. In this paper, we propose two copula-based density estimation models that can cope with multivariate correlation among zero-inflated continuous variables. In order to overcome the difficulty in the use of copulas due to the tied-data problem in zero-inflated data, we propose a new type of copula, rectified Gaussian copula, and present efficient methods for parameter estimation and likelihood computation. Numerical experiments demonstrates the superiority of our proposals compared to conventional density estimation methods.

The $k$-tensor Ising model is an exponential family on a $p$-dimensional binary hypercube for modeling dependent binary data, where the sufficient statistic consists of all $k$-fold products of the observations, and the parameter is an unknown $k$-fold tensor, designed to capture higher-order interactions between the binary variables. In this paper, we describe an approach based on a penalization technique that helps us recover the signed support of the tensor parameter with high probability, assuming that no entry of the true tensor is too close to zero. The method is based on an $\ell_1$-regularized node-wise logistic regression, that recovers the signed neighborhood of each node with high probability. Our analysis is carried out in the high-dimensional regime, that allows the dimension $p$ of the Ising model, as well as the interaction factor $k$ to potentially grow to $\infty$ with the sample size $n$. We show that if the minimum interaction strength is not too small, then consistent recovery of the entire signed support is possible if one takes $n = \Omega((k!)^8 d^3 \log \binom{p-1}{k-1})$ samples, where $d$ denotes the maximum degree of the hypernetwork in question. Our results are validated in two simulation settings, and applied on a real neurobiological dataset consisting of multi-array electro-physiological recordings from the mouse visual cortex, to model higher-order interactions between the brain regions.

Comparison-based learning addresses the problem of learning when, instead of explicit features or pairwise similarities, one only has access to comparisons of the form: \emph{Object $A$ is more similar to $B$ than to $C$.} Recently, it has been shown that, in Hierarchical Clustering, single and complete linkage can be directly implemented using only such comparisons while several algorithms have been proposed to emulate the behaviour of average linkage. Hence, finding hierarchies (or dendrograms) using only comparisons is a well understood problem. However, evaluating their meaningfulness when no ground-truth nor explicit similarities are available remains an open question. In this paper, we bridge this gap by proposing a new revenue function that allows one to measure the goodness of dendrograms using only comparisons. We show that this function is closely related to Dasgupta's cost for hierarchical clustering that uses pairwise similarities. On the theoretical side, we use the proposed revenue function to resolve the open problem of whether one can approximately recover a latent hierarchy using few triplet comparisons. On the practical side, we present principled algorithms for comparison-based hierarchical clustering based on the maximisation of the revenue and we empirically compare them with existing methods.

Building models and methods for complex data is an important task for many scientific and application areas. Many modern datasets exhibit dependencies among observations as well as variables. This gives rise to the challenging problem of analyzing high-dimensional matrix-variate data with unknown dependence structures. To address this challenge, Kalaitzis et. al. (2013) proposed the Bigraphical Lasso (BiGLasso), an estimator for precision matrices of matrix-normals based on the Cartesian product of graphs. Subsequently, Greenewald, Zhou and Hero (GZH 2019) introduced a multiway tensor generalization of the BiGLasso estimator, known as the TeraLasso estimator. In this paper, we provide sharp rates of convergence in the Frobenius and operator norm for both BiGLasso and TeraLasso estimators for estimating inverse covariance matrices. This improves upon the rates presented in GZH 2019. In particular, (a) we strengthen the bounds for the relative errors in the operator and Frobenius norm by a factor of approximately $\log p$; (b) Crucially, this improvement allows for finite-sample estimation errors in both norms to be derived for the two-way Kronecker sum model. This closes the gap between the low single-sample error for the two-way model empirically observed in GZH 2019 and the theoretical bounds therein. The two-way regime is particularly significant since it is the setting of common and generic applications in practice. Normality is not needed in our proofs; instead, we consider subgaussian ensembles and derive tight concentration of measure bounds, using tensor unfolding techniques. The proof techniques may be of independent interest to the analysis of tensor-valued data.

北京阿比特科技有限公司