We present an open-source CUDA-based package that consists of a compilation of exponential integrators where the action of the matrix exponential or the $\varphi_l$ functions on a vector is approximated using the method of polynomial interpolation at Leja points. Using a couple of test examples on an NVIDIA A100 GPU, we show that one can achieve significant speedups using CUDA over the corresponding CPU code. LeXInt, written in a modular format, facilitates easy integration into any existing software package, and can be used for temporal integration of any differential equation.
We present a new open-vocabulary detection framework. Our framework uses both image-level labels and detailed detection annotations when available. Our framework proceeds in three steps. We first train a language-conditioned object detector on fully-supervised detection data. This detector gets to see the presence or absence of ground truth classes during training, and conditions prediction on the set of present classes. We use this detector to pseudo-label images with image-level labels. Our detector provides much more accurate pseudo-labels than prior approaches with its conditioning mechanism. Finally, we train an unconditioned open-vocabulary detector on the pseudo-annotated images. The resulting detector, named DECOLA, shows strong zero-shot performance in open-vocabulary LVIS benchmark as well as direct zero-shot transfer benchmarks on LVIS, COCO, Object365, and OpenImages. DECOLA outperforms the prior arts by 17.1 AP-rare and 9.4 mAP on zero-shot LVIS benchmark. DECOLA achieves state-of-the-art results in various model sizes, architectures, and datasets by only training on open-sourced data and academic-scale computing. Code is available at //github.com/janghyuncho/DECOLA.
Contrastive pretraining of image-text foundation models, such as CLIP, demonstrated excellent zero-shot performance and improved robustness on a wide range of downstream tasks. However, these models utilize large transformer-based encoders with significant memory and latency overhead which pose challenges for deployment on mobile devices. In this work, we introduce MobileCLIP -- a new family of efficient image-text models optimized for runtime performance along with a novel and efficient training approach, namely multi-modal reinforced training. The proposed training approach leverages knowledge transfer from an image captioning model and an ensemble of strong CLIP encoders to improve the accuracy of efficient models. Our approach avoids train-time compute overhead by storing the additional knowledge in a reinforced dataset. MobileCLIP sets a new state-of-the-art latency-accuracy tradeoff for zero-shot classification and retrieval tasks on several datasets. Our MobileCLIP-S2 variant is 2.3$\times$ faster while more accurate compared to previous best CLIP model based on ViT-B/16. We further demonstrate the effectiveness of our multi-modal reinforced training by training a CLIP model based on ViT-B/16 image backbone and achieving +2.9% average performance improvement on 38 evaluation benchmarks compared to the previous best. Moreover, we show that the proposed approach achieves 10$\times$-1000$\times$ improved learning efficiency when compared with non-reinforced CLIP training.
We introduce STRAUSS (Sonification Tools and Resources for Analysis Using Sound Synthesis) a modular, self-contained and flexible Python sonification package, operating in a free and open source (FOSS) capacity. STRAUSS is intended to be a flexible tool suitable for both scientific data exploration and analysis as well as for producing sonifications that are suitable for public outreach and artistic contexts. We explain the motivations behind STRAUSS, and how these lead to our design choices. We also describe the basic code structure and concepts. We then present output sonification examples, specifically: (1) multiple representations of univariate data (i.e., single data series) for data exploration; (2) how multi-variate data can be mapped onto sound to help interpret how those data variables are related and; (3) a full spatial audio example for immersive Virtual Reality. We summarise, alluding to some of the future functionality as STRAUSS development accelerates.
PyTorch has ascended as a premier machine learning framework, yet it lacks a native and comprehensive library for decision and control tasks suitable for large development teams dealing with complex real-world data and environments. To address this issue, we propose TorchRL, a generalistic control library for PyTorch that provides well-integrated, yet standalone components. We introduce a new and flexible PyTorch primitive, the TensorDict, which facilitates streamlined algorithm development across the many branches of Reinforcement Learning (RL) and control. We provide a detailed description of the building blocks and an extensive overview of the library across domains and tasks. Finally, we experimentally demonstrate its reliability and flexibility and show comparative benchmarks to demonstrate its computational efficiency. TorchRL fosters long-term support and is publicly available on GitHub for greater reproducibility and collaboration within the research community. The code is open-sourced on GitHub.
In this work, the Localized Filtering-based Attention (LFA) is introduced to incorporate prior knowledge of local dependencies of natural language into Attention. Based on LFA, we develop and release Yuan 2.0, a large language model with parameters ranging from 2.1 billion to 102.6 billion. A data filtering and generation method is presented to build pretraining and fine-tuning dataset in high quality. A distributed training method with non-uniform pipeline parallel, data parallel, and optimizer parallel is proposed, which greatly reduces the bandwidth requirements of intra-node communication, and achieves good performance in large-scale distributed training. Yuan 2.0 models display impressive ability in code generation, math problem-solving, and chat compared with existing models. The latest version of YUAN 2.0, including model weights and source code, is accessible at Github.
We present an automatic large language model (LLM) conversion approach that produces uncertainty-aware LLMs capable of estimating uncertainty with every prediction. Our approach is model- and data-agnostic, is computationally-efficient, and does not rely on external models or systems. We evaluate converted models on the selective question answering setting -- to answer as many questions as possible while maintaining a given accuracy, forgoing providing predictions when necessary. As part of our results, we test BERT and Llama 2 model variants on the SQuAD extractive QA task and the TruthfulQA generative QA task. We show that using the uncertainty estimates provided by our approach to selectively answer questions leads to significantly higher accuracy over directly using model probabilities.
Adversarial attacks are an important security concern for computer vision (CV), as they enable malicious attackers to reliably manipulate CV models. Existing attacks aim to elicit an output desired by the attacker, but keep the model fully intact on clean data. With CV models becoming increasingly valuable assets in applied practice, a new attack vector is emerging: disrupting the models as a form of economic sabotage. This paper opens up the exploration of damaging adversarial attacks (DAAs) that seek to damage the target model and maximize the total cost incurred by the damage. As a pioneer DAA, this paper proposes Trainwreck, a train-time attack that poisons the training data of image classifiers to degrade their performance. Trainwreck conflates the data of similar classes using stealthy ($\epsilon \leq 8/255$) class-pair universal perturbations computed using a surrogate model. Trainwreck is a black-box, transferable attack: it requires no knowledge of the target model's architecture, and a single poisoned dataset degrades the performance of any model trained on it. The experimental evaluation on CIFAR-10 and CIFAR-100 demonstrates that Trainwreck is indeed an effective attack across various model architectures including EfficientNetV2, ResNeXt-101, and a finetuned ViT-L-16. The strength of the attack can be customized by the poison rate parameter. Finally, data redundancy with file hashing and/or pixel difference are identified as a reliable defense technique against Trainwreck or similar DAAs. The code is available at //github.com/JanZahalka/trainwreck.
Autonomous applications are typically developed over Robot Operating System 2.0 (ROS2) even in time-critical systems like automotive. Recent years have seen increased interest in developing model-based timing analysis and schedule optimization approaches for ROS2-based applications. To complement these approaches, we propose a tracing and measurement framework to obtain timing models of ROS2-based applications. It offers a tracer based on extended Berkeley Packet Filter (eBPF) that probes different functions in ROS2 middleware and reads their arguments or return values to reason about the data flow in applications. It combines event traces from ROS2 and the operating system to generate a directed acyclic graph showing ROS2 callbacks, precedence relations between them, and their timing attributes. While being compatible with existing analyses, we also show how to model (i)~message synchronization, e.g., in sensor fusion, and (ii)~service requests from multiple clients, e.g., in motion planning. Considering that, in real-world scenarios, the application code might be confidential and formal models are unavailable, our framework still enables the application of existing analysis and optimization techniques.
Specifying legal requirements for software systems to ensure their compliance with the applicable regulations is a major concern to requirements engineering (RE). Personal data which is collected by an organization is often shared with other organizations to perform certain processing activities. In such cases, the General Data Protection Regulation (GDPR) requires issuing a data processing agreement (DPA) which regulates the processing and further ensures that personal data remains protected. Violating GDPR can lead to huge fines reaching to billions of Euros. Software systems involving personal data processing must adhere to the legal obligations stipulated in GDPR and outlined in DPAs. Requirements engineers can elicit from DPAs legal requirements for regulating the data processing activities in software systems. Checking the completeness of a DPA according to the GDPR provisions is therefore an essential prerequisite to ensure that the elicited requirements are complete. Analyzing DPAs entirely manually is time consuming and requires adequate legal expertise. In this paper, we propose an automation strategy to address the completeness checking of DPAs against GDPR. Specifically, we pursue ten alternative solutions which are enabled by different technologies, namely traditional machine learning, deep learning, language modeling, and few-shot learning. The goal of our work is to empirically examine how these different technologies fare in the legal domain. We computed F2 score on a set of 30 real DPAs. Our evaluation shows that best-performing solutions yield F2 score of 86.7% and 89.7% are based on pre-trained BERT and RoBERTa language models. Our analysis further shows that other alternative solutions based on deep learning (e.g., BiLSTM) and few-shot learning (e.g., SetFit) can achieve comparable accuracy, yet are more efficient to develop.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.