亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data collected at Hurricane Ian (2022) quantifies the demands that small uncrewed aerial systems (UAS), or drones, place on the network communication infrastructure and identifies gaps in the field. Drones have been increasingly used since Hurricane Katrina (2005) for disaster response, however getting the data from the drone to the appropriate decision makers throughout incident command in a timely fashion has been problematic. These delays have persisted even as countries such as the USA have made significant investments in wireless infrastructure, rapidly deployable nodes, and an increase in commercial satellite solutions. Hurricane Ian serves as a case study of the mismatch between communications needs and capabilities. In the first four days of the response, nine drone teams flew 34 missions under the direction of the State of Florida FL-UAS1, generating 636GB of data. The teams had access to six different wireless communications networks but had to resort to physically transferring data to the nearest intact emergency operations center in order to make the data available to the relevant agencies. The analysis of the mismatch contributes a model of the drone data-to-decision workflow in a disaster and quantifies wireless network communication requirements throughout the workflow in five factors. Four of the factors-availability, bandwidth, burstiness, and spatial distribution-were previously identified from analyses of Hurricanes Harvey (2017) and Michael (2018). This work adds upload rate as a fifth attribute. The analysis is expected to improve drone design and edge computing schemes as well as inform wireless communication research and development.

相關內容

Explanation:無線網。 Publisher:Springer。 SIT:

Informationization is a prevailing trend in today's world. The increasing demand for information in decision-making processes poses significant challenges for investigation activities, particularly in terms of effectively allocating limited resources to plan investigation programs. This paper addresses the investigation path planning problem by formulating it as a multi-traveling salesman problem (MTSP). Our objective is to minimize costs, and to achieve this, we propose a chaotic artificial fish swarm algorithm based on multiple population differential evolution (DE-CAFSA). To overcome the limitations of the artificial fish swarm algorithm, such as low optimization accuracy and the inability to consider global and local information, we incorporate adaptive field of view and step size adjustments, replace random behavior with the 2-opt operation, and introduce chaos theory and sub-optimal solutions to enhance optimization accuracy and search performance. Additionally, we integrate the differential evolution algorithm to create a hybrid algorithm that leverages the complementary advantages of both approaches. Experimental results demonstrate that DE-CAFSA outperforms other algorithms on various public datasets of different sizes, as well as showcasing excellent performance on the examples proposed in this study.

Relational networks within a team play a critical role in the performance of many real-world multi-robot systems. To successfully accomplish tasks that require cooperation and coordination, different agents (e.g., robots) necessitate different priorities based on their positioning within the team. Yet, many of the existing multi-robot cooperation algorithms regard agents as interchangeable and lack a mechanism to guide the type of cooperation strategy the agents should exhibit. To account for the team structure in cooperative tasks, we propose a novel algorithm that uses a relational network comprising inter-agent relationships to prioritize certain agents over others. Through appropriate design of the team's relational network, we can guide the cooperation strategy, resulting in the emergence of new behaviors that accomplish the specified task. We conducted six experiments in a multi-robot setting with a cooperative task. Our results demonstrate that the proposed method can effectively influence the type of solution that the algorithm converges to by specifying the relationships between the agents, making it a promising approach for tasks that require cooperation among agents with a specified team structure.

Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of $\mathcal{O}(C)$, where $C$ is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.

Multidimensional constellation shaping of up to 32 dimensions with different spectral efficiencies are compared through AWGN and fiber-optic simulations. The results show that no constellation is universal and the balance of required and effective SNRs should be jointly considered for the specific optical transmission scenario.

This work stems from three observations on prior Just-In-Time Software Defect Prediction (JIT-SDP) models. First, prior studies treat the JIT-SDP problem solely as a classification problem. Second, prior JIT-SDP studies do not consider that class balancing processing may change the underlying characteristics of software changeset data. Third, only a single source of concept drift, the class imbalance evolution is addressed in prior JIT-SDP incremental learning models. We propose an incremental learning framework called CPI-JIT for JIT-SDP. First, in addition to a classification modeling component, the framework includes a time-series forecast modeling component in order to learn temporal interdependent relationship in the changesets. Second, the framework features a purposefully designed over-sampling balancing technique based on SMOTE and Principal Curves called SMOTE-PC. SMOTE-PC preserves the underlying distribution of software changeset data. In this framework, we propose an incremental deep neural network model called DeepICP. Via an evaluation using \numprojs software projects, we show that: 1) SMOTE-PC improves the model's predictive performance; 2) to some software projects it can be beneficial for defect prediction to harness temporal interdependent relationship of software changesets; and 3) principal curves summarize the underlying distribution of changeset data and reveals a new source of concept drift that the DeepICP model is proposed to adapt to.

Formal verification of intelligent agents is often computationally infeasible due to state-space explosion. We present a tool for reducing the impact of the explosion by means of state abstraction that is (a) easy to use and understand by non-experts, and (b) agent-based in the sense that it operates on a modular representation of the system, rather than on its huge explicit state model.

Zero-shot Dialogue State Tracking (DST) addresses the challenge of acquiring and annotating task-oriented dialogues, which can be time consuming and costly. However, DST extends beyond simple slot-filling and requires effective updating strategies for tracking dialogue state as conversations progress. In this paper, we propose ParsingDST, a new In-Context Learning (ICL) method, to introduce additional intricate updating strategies in zero-shot DST. Our approach reformulates the DST task by leveraging powerful Large Language Models (LLMs) and translating the original dialogue text to JSON through semantic parsing as an intermediate state. We also design a novel framework that includes more modules to ensure the effectiveness of updating strategies in the text-to-JSON process. Experimental results demonstrate that our approach outperforms existing zero-shot DST methods on MultiWOZ, exhibiting significant improvements in Joint Goal Accuracy (JGA) and slot accuracy compared to existing ICL methods.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司