A perfect $k$-coloring of the Boolean hypercube $Q_n$ is a function from the set of binary words of length $n$ onto a $k$-set of colors such that for any colors $i$ and $j$ every word of color $i$ has exactly $S(i,j)$ neighbors (at Hamming distance $1$) of color $j$, where the coefficient $S(i,j)$ depend only on $i$ and $j$ but not on the particular choice of the words. The $k$-by-$k$ table of all coefficients $S(i,j)$ is called the quotient matrix. We characterize perfect colorings of $Q_n$ of degree at most $3$, that is, with quotient matrix whose all eigenvalues are not less than $n-6$, or, equivalently, such that every color corresponds to a Boolean function represented by a polynomial of degree at most $3$ over $R$. Additionally, we characterize $(n-4)$-correlation-immune perfect colorings of $Q_n$, whose all colors correspond to $(n-4)$-correlation-immune Boolean functions, or, equivalently, all non-main (different from $n$) eigenvalues of the quotient matrix are not greater than $6-n$. Keywords: perfect coloring, equitable partition, resilient function, correlation-immune function.
We consider the gradient descent flow widely used for the minimization of the $\mathcal{L}^2$ cost function in Deep Learning networks, and introduce two modified versions; one adapted for the overparametrized setting, and the other for the underparametrized setting. Both have a clear and natural invariant geometric meaning, taking into account the pullback vector bundle structure in the overparametrized, and the pushforward vector bundle structure in the underparametrized setting. In the overparametrized case, we prove that, provided that a rank condition holds, all orbits of the modified gradient descent drive the $\mathcal{L}^2$ cost to its global minimum at a uniform exponential convergence rate; one thereby obtains an a priori stopping time for any prescribed proximity to the global minimum. We point out relations of the latter to sub-Riemannian geometry.
A subset $I$ of the vertex set $V(G)$ of a graph $G$ is called a $k$-clique independent set of $G$ if no $k$ vertices in $I$ form a $k$-clique of $G$. An independent set is a $2$-clique independent set. Let $\pi_k(G)$ denote the number of $k$-cliques of $G$. For a function $w: V(G) \rightarrow \{0, 1, 2, \dots\}$, let $G(w)$ be the graph obtained from $G$ by replacing each vertex $v$ by a $w(v)$-clique $K^v$ and making each vertex of $K^u$ adjacent to each vertex of $K^v$ for each edge $\{u,v\}$ of $G$. For an integer $m \geq 1$, consider any $w$ with $\sum_{v \in V(G)} w(v) = m$. For $U \subseteq V(G)$, we say that $w$ is uniform on $U$ if $w(v) = 0$ for each $v \in V(G) \setminus U$ and, for each $u \in U$, $w(u) = \left\lfloor m/|U| \right\rfloor$ or $w(u) = \left\lceil m/|U| \right\rceil$. Katona asked if $\pi_k(G(w))$ is smallest when $w$ is uniform on a largest $k$-clique independent set of $G$. He placed particular emphasis on the Sperner graph $B_n$, given by $V(B_n) = \{X \colon X \subseteq \{1, \dots, n\}\}$ and $E(B_n) = \{\{X,Y\} \colon X \subsetneq Y \in V(B_n)\}$. He provided an affirmative answer for $k = 2$ (and any $G$). We determine graphs for which the answer is negative for every $k \geq 3$. These include $B_n$ for $n \geq 2$. Generalizing Sperner's Theorem and a recent result of Qian, Engel and Xu, we show that $\pi_k(B_n(w))$ is smallest when $w$ is uniform on a largest independent set of $B_n$. We also show that the same holds for complete multipartite graphs and chordal graphs. We show that this is not true of every graph, using a deep result of Bohman on triangle-free graphs.
For a matrix $A$ which satisfies Crouzeix's conjecture, we construct several classes of matrices from $A$ for which the conjecture will also hold. We discover a new link between cyclicity and Crouzeix's conjecture, which shows that Crouzeix's Conjecture holds in full generality if and only if it holds for the differentiation operator on a class of analytic functions. We pose several open questions, which if proved, will prove Crouzeix's conjecture. We also begin an investigation into Crouzeix's conjecture for symmetric matrices and in the case of $3 \times 3$ matrices, we show Crouzeix's conjecture holds for symmetric matrices if and only if it holds for analytic truncated Toeplitz operators.
The minimum set cover (MSC) problem admits two classic algorithms: a greedy $\ln n$-approximation and a primal-dual $f$-approximation, where $n$ is the universe size and $f$ is the maximum frequency of an element. Both algorithms are simple and efficient, and remarkably -- one cannot improve these approximations under hardness results by more than a factor of $(1+\epsilon)$, for any constant $\epsilon > 0$. In their pioneering work, Gupta et al. [STOC'17] showed that the greedy algorithm can be dynamized to achieve $O(\log n)$-approximation with update time $O(f \log n)$. Building on this result, Hjuler et al. [STACS'18] dynamized the greedy minimum dominating set (MDS) algorithm, achieving a similar approximation with update time $O(\Delta \log n)$ (the analog of $O(f \log n)$), albeit for unweighted instances. The approximations of both algorithms, which are the state-of-the-art, exceed the static $\ln n$-approximation by a rather large constant factor. In sharp contrast, the current best dynamic primal-dual MSC algorithms achieve fast update times together with an approximation that exceeds the static $f$-approximation by a factor of (at most) $1+\epsilon$, for any $\epsilon > 0$. This paper aims to bridge the gap between the best approximation factor of the dynamic greedy MSC and MDS algorithms and the static $\ln n$ bound. We present dynamic algorithms for weighted greedy MSC and MDS with approximation $(1+\epsilon)\ln n$ for any $\epsilon > 0$, while achieving the same update time (ignoring dependencies on $\epsilon$) of the best previous algorithms (with approximation significantly larger than $\ln n$). Moreover, [...]
We propose a new representation of functions in Sobolev spaces on an $N$-dimensional hyper-rectangle, expressing such functions in terms of their admissible derivatives, evaluated along lower-boundaries of the domain. These boundary values are either finite-dimensional or exist in the space $L_{2}$ of square-integrable functions -- free of the continuity constraints inherent to Sobolev space. Moreover, we show that the map from this space of boundary values to the Sobolev space is given by an integral operator with polynomial kernel, and we prove that this map is invertible. Using this result, we propose a method for polynomial approximation of functions in Sobolev space, reconstructing such an approximation from polynomial projections of the boundary values. We prove that this approximation is optimal with respect to a discrete-continuous Sobolev norm, and show through numerical examples that it exhibits better convergence behavior than direct projection of the function. Finally, we show that this approach may also be adapted to use a basis of step functions, to construct accurate piecewise polynomial approximations that do not suffer from e.g. Gibbs phenomenon.
The Davis-Kahan-Wedin $\sin \Theta$ theorem describes how the singular subspaces of a matrix change when subjected to a small perturbation. This classic result is sharp in the worst case scenario. In this paper, we prove a stochastic version of the Davis-Kahan-Wedin $\sin \Theta$ theorem when the perturbation is a Gaussian random matrix. Under certain structural assumptions, we obtain an optimal bound that significantly improves upon the classic Davis-Kahan-Wedin $\sin \Theta$ theorem. One of our key tools is a new perturbation bound for the singular values, which may be of independent interest.
Permutation polynomials with few terms (especially permutation binomials) attract many people due to their simple algebraic structure. Despite the great interests in the study of permutation binomials, a complete characterization of permutation binomials is still unknown. In this paper, we give a classification of permutation binomials of the form $x^i+ax$ over $\mathbb{F}_{2^n}$, where $n\leq 8$ by characterizing three new classes of permutation binomials. In particular one of them has relatively large index $\frac{q^2+q+1}{3}$ over $\mathbb{F}_{q^3}$.
We define the notion of $k$-safe infinitary series over idempotent ordered totally generalized product $\omega $-valuation monoids that satisfy specific properties. For each element $k$ of the underlying structure (different from the neutral elements of the additive, and the multiplicative operation) we determine two syntactic fragments of the weighted $LTL$ with the property that the semantics of the formulas in these fragments are $k$ -safe infinitary series. For specific idempotent ordered totally generalized product $\omega $-valuation monoids we provide algorithms that given a weighted B\"{u}chi automaton and a weighted $LTL$ formula in these fragments, decide whether the behavior of the automaton coincides with the semantics of the formula.
In algebraic geometry, enumerating or finding superspecial curves in positive characteristic $p$ is important both in theory and in computation. In this paper, we propose feasible algorithms to enumerate or find superspecial hyperelliptic curves of genus $4$ with automorphism group properly containing the Klein $4$-group. Executing the algorithms on Magma, we succeeded in enumerating such superspecial curves for every $p$ with $19 \leq p < 500$, and in finding a single one for every $p$ with $19 \leq p < 7000$.
Fractional calculus with respect to function $\psi$, also named as $\psi$-fractional calculus, generalizes the Hadamard and the Riemann-Liouville fractional calculi, which causes challenge in numerical treatment. In this paper we study spectral-type methods using mapped Jacobi functions (MJFs) as basis functions and obtain efficient algorithms to solve $\psi$-fractional differential equations. In particular, we setup the Petrov-Galerkin spectral method and spectral collocation method for initial and boundary value problems involving $\psi$-fractional derivatives. We develop basic approximation theory for the MJFs and conduct the error estimates of the derived methods. We also establish a recurrence relation to evaluate the collocation differentiation matrix for implementing the spectral collocation algorithm. Numerical examples confirm the theoretical results and demonstrate the effectiveness of the spectral and collocation methods.