Intelligent reflecting surface (IRS) is envisioned to become a key technology for the upcoming six-generation (6G) wireless system due to its potential of reaping high performance in a power-efficient and cost-efficient way. With its disruptive capability and hardware constraint, the integration of IRS imposes some fundamental particularities on the coordination of multi-user signal transmission. Consequently, the conventional orthogonal and non-orthogonal multiple-access schemes are hard to directly apply because of the joint optimization of active beamforming at the base station and passive reflection at the IRS. Relying on an alternating optimization method, we develop novel schemes for efficient multiple access in IRS-aided multi-user multi-antenna systems in this paper. Achievable performance in terms of the sum spectral efficiency is theoretically analyzed. A comprehensive comparison of different schemes and configurations is conducted through Monte-Carlo simulations to clarify which scheme is favorable for this emerging 6G paradigm.
Optical Wireless Communication networks (OWC) has emerged as a promising technology that enables high-speed and reliable communication bandwidth for a variety of applications. In this work, we investigated applying Random Linear Network Coding (RLNC) over NOMA-based OWC networks to improve the performance of the proposed high density indoor optical wireless network where users are divided into multicast groups, and each group contains users that slightly differ in their channel gains. Moreover, a fixed power allocation strategy is considered to manage interference among these groups and to avoid complexity. The performance of the proposed RLNC-NOMA scheme is evaluated in terms of average bit error rate and ergodic sum rate versus the power allocation ratio factor. The results show that the proposed scheme is more suitable for the considered network compared to the traditional NOMA and orthogonal transmission schemes.
In this paper, we investigate the performance of multiple-input multiple-output (MIMO) fading channels assisted by a reconfigurable intelligent surface (RIS), through the employment of partition-based RIS schemes. The proposed schemes are implemented without requiring any channel state information knowledge at the transmitter side; this characteristic makes them attractive for practical applications. In particular, the RIS elements are partitioned into sub-surfaces, which are periodically modified in an efficient way to assist the communication. Under this framework, we propose two low-complexity partition-based schemes, where each sub-surface is adjusted by following an amplitude-based or a phase-based approach. Specifically, the activate-reflect (AR) scheme activates each sub-surface consecutively, by changing the reflection amplitude of the corresponding elements. On the other hand, the flip-reflect (FR) scheme adjusts periodically the phase shift of the elements at each sub-surface. Through the sequential reconfiguration of each sub-surface, an equivalent parallel channel in the time domain is produced. We analyze the performance of each scheme in terms of outage probability and provide expressions for the achieved diversity-multiplexing tradeoff. Our results show that the asymptotic performance of the considered network under the partition-based schemes can be significantly enhanced in terms of diversity gain compared to the conventional case, where a single partition is considered. Moreover, the FR scheme always achieves the maximum multiplexing gain, while for the AR scheme this maximum gain can be achieved only under certain conditions with respect to the number of elements in each sub-surface.
In this paper, we investigate the employment of reconfigurable intelligent surfaces (RISs) into vehicle platoons, functioning in tandem with a base station (BS) in support of the high-precision location tracking. In particular, the use of a RIS imposes additional structured sparsity that, when paired with the initial sparse line-of-sight (LoS) channels of the BS, facilitates beneficial group sparsity. The resultant group sparsity significantly enriches the energies of the original direct-only channel, enabling a greater concentration of the LoS channel energies emanated from the same vehicle location index. Furthermore, the burst sparsity is exposed by representing the non-line-of-sight (NLoS) channels as their sparse copies. This thus constitutes the philosophy of the diverse sparsities of interest. Then, a diverse dynamic layered structured sparsity (DiLuS) framework is customized for capturing different priors for this pair of sparsities, based upon which the location tracking problem is formulated as a maximum a posterior (MAP) estimate of the location. Nevertheless, the tracking issue is highly intractable due to the ill-conditioned sensing matrix, intricately coupled latent variables associated with the BS and RIS, and the spatialtemporal correlations among the vehicle platoon. To circumvent these hurdles, we propose an efficient algorithm, namely DiLuS enabled spatial-temporal platoon localization (DiLuS-STPL), which incorporates both variational Bayesian inference (VBI) and message passing techniques for recursively achieving parameter updates in a turbo-like way. Finally, we demonstrate through extensive simulation results that the localization relying exclusively upon a BS and a RIS may achieve the comparable precision performance obtained by the two individual BSs, along with the robustness and superiority of our proposed algorithm as compared to various benchmark schemes.
In this paper we study multi-task oriented communication system via studying analog encoding method for multiple estimation tasks. The basic idea is to utilize the correlation among interested information required by different tasks and the feature of broadcast channel. For linear estimation tasks, we provide a low complexity algorithm for multi-user multi-task system based on orthogonal decomposition of subspaces. It is proved to be the optimal solution in some special cases, and for general cases, numerical results also show significant improvements over baseline methods. Further, we make a trial to migrate above method to neural networks based non-linear estimation tasks, and it also shows improvement in energy efficiency.
The explosive development of the Internet of Things (IoT) has led to increased interest in mobile edge computing (MEC), which provides computational resources at network edges to accommodate computation-intensive and latency-sensitive applications. Intelligent reflecting surfaces (IRSs) have gained attention as a solution to overcome blockage problems during the offloading uplink transmission in MEC systems. This paper explores IRS-aided multi-cell networks that enable servers to serve neighboring cells and cooperate to handle resource exhaustion. We aim to minimize the joint energy and latency cost, by jointly optimizing computation tasks, edge computing resources, user beamforming, and IRS phase shifts. The problem is decomposed into two subproblems--the MEC subproblem and the IRS communication subproblem--using the block coordinate descent (BCD) technique. The MEC subproblem is reformulated as a nonconvex quadratic constrained problem (QCP), while the IRS communication subproblem is transformed into a weight-sum-rate problem with auxiliary variables. We propose an efficient algorithm to iteratively optimize MEC resources and IRS communication until convergence. Numerical results show that our algorithm outperforms benchmarks and that multi-cell MEC systems achieve additional performance gains when supported by IRS.
This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous Petrov-Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) pp. 12-26) and extends the convergence results from $\mathcal{O}(10^7)$ degrees of freedom (DOFs) to $\mathcal{O}(10^9)$ DOFs using a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. In the uniform refinement setting, a detailed convergence study is provided, demonstrating h and p robust convergence and linear dependence with respect to the wave frequency. The paper concludes with numerical results on hp-adaptive simulations including a large-scale seismic modeling benchmark problem with high material contrast.
Integrating sensing functionalities is envisioned as a distinguishing feature of next-generation mobile networks, which has given rise to the development of a novel enabling technology -- \emph{Integrated Sensing and Communication (ISAC)}. Portraying the theoretical performance bounds of ISAC systems is fundamentally important to understand how sensing and communication functionalities interact (e.g., competitively or cooperatively) in terms of resource utilization, while revealing insights and guidelines for the development of effective physical-layer techniques. In this paper, we characterize the fundamental performance tradeoff between the detection probability for target monitoring and the user's achievable rate in ISAC systems. To this end, we first discuss the achievable rate of the user under sensing-free and sensing-interfered communication scenarios. Furthermore, we derive closed-form expressions for the probability of false alarm (PFA) and the successful probability of detection (PD) for monitoring the target of interest, where we consider both communication-assisted and communication-interfered sensing scenarios. In addition, the effects of the unknown channel coefficient are also taken into account in our theoretical analysis. Based on our analytical results, we then carry out a comprehensive assessment of the performance tradeoff between sensing and communication functionalities. Specifically, we formulate a power allocation problem to minimize the transmit power at the base station (BS) under the constraints of ensuring a required PD for perception as well as the communication user's quality of service requirement in terms of achievable rate. Finally, simulation results corroborate the accuracy of our theoretical analysis and the effectiveness of the proposed power allocation solutions.
In the future 6G integrated sensing and communication (ISAC) cellular systems, networked sensing is a promising technique that can leverage the cooperation among the base stations (BSs) to perform high-resolution localization. However, a dense deployment of BSs to fully reap the networked sensing gain is not a cost-efficient solution in practice. Motivated by the advance in the intelligent reflecting surface (IRS) technology for 6G communication, this paper examines the feasibility of deploying the low-cost IRSs to enhance the anchor density for networked sensing. Specifically, we propose a novel heterogeneous networked sensing architecture, which consists of both the active anchors, i.e., the BSs, and the passive anchors, i.e., the IRSs. Under this framework, the BSs emit the orthogonal frequency division multiplexing (OFDM) communication signals in the downlink for localizing the targets based on their echoes reflected via/not via the IRSs. However, there are two challenges for using passive anchors in localization. First, it is impossible to utilize the round-trip signal between a passive IRS and a passive target for estimating their distance. Second, before localizing a target, we do not know which IRS is closest to it and serves as its anchor. In this paper, we show that the distance between a target and its associated IRS can be indirectly estimated based on the length of the BS-target-BS path and the BS-target-IRS-BS path. Moreover, we propose an efficient data association method to match each target to its associated IRS. Numerical results are given to validate the feasibility and effectiveness of our proposed heterogeneous networked sensing architecture with both active and passive anchors.
In this paper we discuss potentially practical ways to produce expander graphs with good spectral properties and a compact description. We focus on several classes of uniform and bipartite expander graphs defined as random Schreier graphs of the general linear group over the finite field of size two. We perform numerical experiments and show that such constructions produce spectral expanders that can be useful for practical applications. To find a theoretical explanation of the observed experimental results, we used the method of moments to prove upper bounds for the expected second largest eigenvalue of the random Schreier graphs used in our constructions. We focus on bounds for which it is difficult to study the asymptotic behaviour but it is possible to compute non-trivial conclusions for relatively small graphs with parameters from our numerical experiments (e.g., with less than 2^200 vertices and degree at least logarithmic in the number of vertices).
In strong line-of-sight millimeter-wave (mmWave) wireless systems, the rank-deficient channel severely hampers spatial multiplexing. To address this inherent deficiency, multiple reconfigurable-intelligent-surfaces (RISs) are introduced in this study to customize the wireless channel. Utilizing the RIS to reshape electromagnetic waves, we theoretically show that a favorable channel with an arbitrary tunable rank and a minimized truncated condition number can be established by elaborately designing the placement and reflection matrix of RISs. Different from existing works on multi-RISs, the number of elements needed for each RIS to combat the path loss and the limited phase control is also considered. On the basis of the proposed channel customization, a joint transmitter-RISs-receiver (Tx-RISs-Rx) design under a hybrid mmWave system is investigated to maximize the spectral efficiency. Using the proposed scheme, the optimal singular value decomposition-based hybrid beamforming at the Tx and Rx can be obtained without matrix decomposition for the digital and analog beamforming. The bottoms of the sub-channel mode in the water-filling algorithm, which are conventionally uncontrollable, are proven to be independently adjustable by RISs. Moreover, the transmit power required for realizing multi-stream transmission is derived. Numerical results are presented to verify our theoretical analysis and exhibit substantial gains over systems without RISs.