亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the simulation of differential-algebraic equations (DAEs), it is essential to employ numerical schemes that take into account the inherent structure and maintain explicit or hidden algebraic constraints without altering them. This paper focuses on operator-splitting techniques for coupled systems and aims at preserving the structure in the port-Hamiltonian framework. The study explores two decomposition strategies: one considering the underlying coupled subsystem structure and the other addressing energy-associated properties such as conservation and dissipation. We show that for coupled index-$1$ DAEs with and without private index-2 variables, the splitting schemes on top of a dimension-reducing decomposition achieve the same convergence rate as in the case of ordinary differential equations. Additionally, we discuss an energy-associated decomposition for index-1 pH-DAEs and introduce generalized Cayley transforms to uphold energy conservation. The effectiveness of both strategies is evaluated using port-Hamiltonian benchmark examples from electric circuits.

相關內容

We prove that the combination of a target network and over-parameterized linear function approximation establishes a weaker convergence condition for bootstrapped value estimation in certain cases, even with off-policy data. Our condition is naturally satisfied for expected updates over the entire state-action space or learning with a batch of complete trajectories from episodic Markov decision processes. Notably, using only a target network or an over-parameterized model does not provide such a convergence guarantee. Additionally, we extend our results to learning with truncated trajectories, showing that convergence is achievable for all tasks with minor modifications, akin to value truncation for the final states in trajectories. Our primary result focuses on temporal difference estimation for prediction, providing high-probability value estimation error bounds and empirical analysis on Baird's counterexample and a Four-room task. Furthermore, we explore the control setting, demonstrating that similar convergence conditions apply to Q-learning.

This paper presents an $O^{*}(1.42^{n})$ time algorithm for the Maximum Cut problem on split graphs, along with a subexponential time algorithm for its decision variant.

Counting is a fundamental example of generalization, whether viewed through the mathematical lens of Peano's axioms defining the natural numbers or the cognitive science literature for children learning to count. The argument holds for both cases that learning to count means learning to count infinitely. While few papers have tried to distill transformer "reasoning" to the simplest case of counting, investigating length generalization does occur throughout the literature. In the "train short, test long" paradigm of NLP, length refers to the training sentence length. In formal language recognition, length refers to the input sequence length, or the maximum stack size induced by a pushdown automata. In general problem solving, length refers to the number of hops in a deductive reasoning chain or the recursion depth. For all cases, counting is central to task success. And crucially, generalizing counting inductively is central to success on OOD instances. This work provides extensive empirical results on training language models to count. We experiment with architectures ranging from RNNs, Transformers, State-Space Models and RWKV. We present carefully-designed task formats, auxiliary tasks and positional embeddings to avoid limitations in generalization with OOD-position and OOD-vocabulary. We find that while traditional RNNs trivially achieve inductive counting, Transformers have to rely on positional embeddings to count out-of-domain. As counting is the basis for many arguments concerning the expressivity of Transformers, our finding calls for the community to reexamine the application scope of primitive functions defined in formal characterizations. Finally, modern RNNs also largely underperform traditional RNNs in generalizing counting inductively. We discuss how design choices that enable parallelized training of modern RNNs cause them to lose merits of a recurrent nature.

We propose a series of quantum algorithms for computing a wide range of quantum entropies and distances, including the von Neumann entropy, quantum R\'{e}nyi entropy, trace distance, and fidelity. The proposed algorithms significantly outperform the prior best (and even quantum) ones in the low-rank case, some of which achieve exponential speedups. In particular, for $N$-dimensional quantum states of rank $r$, our proposed quantum algorithms for computing the von Neumann entropy, trace distance and fidelity within additive error $\varepsilon$ have time complexity of $\tilde O(r/\varepsilon^2)$, $\tilde O(r^5/\varepsilon^6)$ and $\tilde O(r^{6.5}/\varepsilon^{7.5})$, respectively. By contrast, prior quantum algorithms for the von Neumann entropy and trace distance usually have time complexity $\Omega(N)$, and the prior best one for fidelity has time complexity $\tilde O(r^{12.5}/\varepsilon^{13.5})$. The key idea of our quantum algorithms is to extend block-encoding from unitary operators in previous work to quantum states (i.e., density operators). It is realized by developing several convenient techniques to manipulate quantum states and extract information from them. The advantage of our techniques over the existing methods is that no restrictions on density operators are required; in sharp contrast, the previous methods usually require a lower bound on the minimal non-zero eigenvalue of density operators.

Knowledge distillation optimises a smaller student model to behave similarly to a larger teacher model, retaining some of the performance benefits. While this method can improve results on in-distribution examples, it does not necessarily generalise to out-of-distribution (OOD) settings. We investigate two complementary methods for improving the robustness of the resulting student models on OOD domains. The first approach augments the distillation with generated unlabelled examples that match the target distribution. The second method upsamples data points among the training set that are similar to the target distribution. When applied on the task of natural language inference (NLI), our experiments on MNLI show that distillation with these modifications outperforms previous robustness solutions. We also find that these methods improve performance on OOD domains even beyond the target domain.

Estimators of doubly robust functionals typically rely on estimating two complex nuisance functions, such as the propensity score and conditional outcome mean for the average treatment effect functional. We consider the problem of how to estimate nuisance functions to obtain optimal rates of convergence for a doubly robust nonparametric functional that has witnessed applications across the causal inference and conditional independence testing literature. For several plug-in type estimators and a one-step type estimator, we illustrate the interplay between different tuning parameter choices for the nuisance function estimators and sample splitting strategies on the optimal rate of estimating the functional of interest. For each of these estimators and each sample splitting strategy, we show the necessity to undersmooth the nuisance function estimators under low regularity conditions to obtain optimal rates of convergence for the functional of interest. By performing suitable nuisance function tuning and sample splitting strategies, we show that some of these estimators can achieve minimax rates of convergence in all H\"older smoothness classes of the nuisance functions.

Neural operator learning models have emerged as very effective surrogates in data-driven methods for partial differential equations (PDEs) across different applications from computational science and engineering. Such operator learning models not only predict particular instances of a physical or biological system in real-time but also forecast classes of solutions corresponding to a distribution of initial and boundary conditions or forcing terms. % DeepONet is the first neural operator model and has been tested extensively for a broad class of solutions, including Riemann problems. Transformers have not been used in that capacity, and specifically, they have not been tested for solutions of PDEs with low regularity. % In this work, we first establish the theoretical groundwork that transformers possess the universal approximation property as operator learning models. We then apply transformers to forecast solutions of diverse dynamical systems with solutions of finite regularity for a plurality of initial conditions and forcing terms. In particular, we consider three examples: the Izhikevich neuron model, the tempered fractional-order Leaky Integrate-and-Fire (LIF) model, and the one-dimensional Euler equation Riemann problem. For the latter problem, we also compare with variants of DeepONet, and we find that transformers outperform DeepONet in accuracy but they are computationally more expensive.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司