This paper introduces the Chemical Environment Modeling Theory (CEMT), a novel, generalized framework designed to overcome the limitations inherent in traditional atom-centered Machine Learning Force Field (MLFF) models, widely used in atomistic simulations of chemical systems. CEMT demonstrated enhanced flexibility and adaptability by allowing reference points to exist anywhere within the modeled domain and thus, enabling the study of various model architectures. Utilizing Gaussian Multipole (GMP) featurization functions, several models with different reference point sets, including finite difference grid-centered and bond-centered models, were tested to analyze the variance in capabilities intrinsic to models built on distinct reference points. The results underscore the potential of non-atom-centered reference points in force training, revealing variations in prediction accuracy, inference speed and learning efficiency. Finally, a unique connection between CEMT and real-space orbital-free finite element Density Functional Theory (FE-DFT) is established, and the implications include the enhancement of data efficiency and robustness. It allows the leveraging of spatially-resolved energy densities and charge densities from FE-DFT calculations, as well as serving as a pivotal step towards integrating known quantum-mechanical laws into the architecture of ML models.
This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring Starchat, all LLMs consistently outperform the original documentation. Notably, closed-source models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/source-available LLMs, namely LLama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration, followed by Llama2, Bard, with ChatGPT and Starchat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.
In recent years, significant advancements have been made in the text generation capabilities of Large Language Models (LLMs), demonstrating exceptional performance in downstream tasks such as abstract summarization, dialogue generation, and data-to-text conversion. However, their generative abilities also pose risks such as the rapid spread of fake news, infringement of datasets/LLM copyrights, and challenges to academic integrity. Text watermarking technology emerges as a potential solution. By embedding invisible yet detectable patterns in generated texts, it helps in tracking and verifying text origins, thus preventing misuse and piracy. This survey aims to comprehensively summarize current text watermarking technologies, covering three main aspects: (1) an overview and comparison of different text watermarking techniques; (2) evaluation methods for text watermarking algorithms, including their success rate, impact on text quality, robustness, and unforgeability; (3) potential applications of text watermarking technologies. This survey aims to help researchers thoroughly understanding the text watermarking technologies, thereby fostering further development.
Centered around solving the Online Saddle Point problem, this paper introduces the Online Convex-Concave Optimization (OCCO) framework, which involves a sequence of two-player time-varying convex-concave games. We propose the generalized duality gap (Dual-Gap) as the performance metric and establish the parallel relationship between OCCO with Dual-Gap and Online Convex Optimization (OCO) with regret. To demonstrate the natural extension of OCCO from OCO, we develop two algorithms, the implicit online mirror descent-ascent and its optimistic variant. Analysis reveals that their duality gaps share similar expression forms with the corresponding dynamic regrets arising from implicit updates in OCO. Empirical results further substantiate the effectiveness of our algorithms. Simultaneously, we unveil that the dynamic Nash equilibrium regret, which was initially introduced in a recent paper, has inherent defects.
This paper proposes a novel, resource-efficient approach to Visual Speech Recognition (VSR) leveraging speech representations produced by any trained Automatic Speech Recognition (ASR) model. Moving away from the resource-intensive trends prevalent in recent literature, our method distills knowledge from a trained Conformer-based ASR model, achieving competitive performance on standard VSR benchmarks with significantly less resource utilization. Using unlabeled audio-visual data only, our baseline model achieves a word error rate (WER) of 47.4% and 54.7% on the LRS2 and LRS3 test benchmarks, respectively. After fine-tuning the model with limited labeled data, the word error rate reduces to 35% (LRS2) and 45.7% (LRS3). Our model can be trained on a single consumer-grade GPU within a few days and is capable of performing real-time end-to-end VSR on dated hardware, suggesting a path towards more accessible and resource-efficient VSR methodologies.
This paper introduces a novel approach to enhance the capabilities of Large Language Models (LLMs) in processing and understanding extensive text sequences, a critical aspect in applications requiring deep comprehension and synthesis of large volumes of information. Recognizing the inherent challenges in extending the context window for LLMs, primarily built on Transformer architecture, we propose a new model architecture, referred to as Zebra. This architecture efficiently manages the quadratic time and memory complexity issues associated with full attention in the Transformer by employing grouped local-global attention layers. Our model, akin to a zebra's alternating stripes, balances local and global attention layers, significantly reducing computational requirements and memory consumption. Comprehensive experiments, including pretraining from scratch, continuation of long context adaptation training, and long instruction tuning, are conducted to evaluate the Zebra's performance. The results show that Zebra achieves comparable or superior performance on both short and long sequence benchmarks, while also enhancing training and inference efficiency.
This paper presents a novel conflict resolution strategy for autonomous surface vehicles (ASVs) to safely navigate and avoid collisions in a multi-vessel environment at sea. Collisions between two or more marine vessels must be avoided by following the International Regulations for Preventing Collisions at Sea (COLREGs). We propose strategy a two-phase strategy called as COLREGs Compliant Conflict-Resolving (COMCORE) strategy, that generates collision-free trajectories for ASVs while complying with COLREGs. In phase-1, a shortest path for each agent is determined, while in phase-2 conflicts are detected and resolved by modifying the path in compliance with COLREGs. COMCORE solution optimises vessel trajectories for lower costs while also providing a safe and collision-free plan for each vessel. Simulation results are presented to show the applicability of COMCORE for larger number agents with very low computational requirement and hence scalable. Further, we experimentally demonstrate COMCORE for two ASVs in a lake to show its ability to determine solution and implementation capability in the real-world.
In this paper, we propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL) to provide effective and interpretable interventions. Our method leverages DRL to provide expert action recommendations while incorporating ToM modeling to understand users' mental states and predict their future actions, enabling appropriate timing for intervention. To explain interventions, we use counterfactual explanations based on RL's feature importance and users' ToM model structure. Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users. We demonstrate the effectiveness of our approach through a series of crowd-sourcing experiments in a simulated team decision-making task, where our system outperforms control baselines in terms of task performance. Our proposed approach is agnostic to task environment and RL model structure, therefore has the potential to be generalized to a wide range of applications.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.