亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel conflict resolution strategy for autonomous surface vehicles (ASVs) to safely navigate and avoid collisions in a multi-vessel environment at sea. Collisions between two or more marine vessels must be avoided by following the International Regulations for Preventing Collisions at Sea (COLREGs). We propose strategy a two-phase strategy called as COLREGs Compliant Conflict-Resolving (COMCORE) strategy, that generates collision-free trajectories for ASVs while complying with COLREGs. In phase-1, a shortest path for each agent is determined, while in phase-2 conflicts are detected and resolved by modifying the path in compliance with COLREGs. COMCORE solution optimises vessel trajectories for lower costs while also providing a safe and collision-free plan for each vessel. Simulation results are presented to show the applicability of COMCORE for larger number agents with very low computational requirement and hence scalable. Further, we experimentally demonstrate COMCORE for two ASVs in a lake to show its ability to determine solution and implementation capability in the real-world.

相關內容

This paper proposes the MBURST, a novel multimodal solution for audio-visual speech enhancements that consider the most recent neurological discoveries regarding pyramidal cells of the prefrontal cortex and other brain regions. The so-called burst propagation implements several criteria to address the credit assignment problem in a more biologically plausible manner: steering the sign and magnitude of plasticity through feedback, multiplexing the feedback and feedforward information across layers through different weight connections, approximating feedback and feedforward connections, and linearizing the feedback signals. MBURST benefits from such capabilities to learn correlations between the noisy signal and the visual stimuli, thus attributing meaning to the speech by amplifying relevant information and suppressing noise. Experiments conducted over a Grid Corpus and CHiME3-based dataset show that MBURST can reproduce similar mask reconstructions to the multimodal backpropagation-based baseline while demonstrating outstanding energy efficiency management, reducing the neuron firing rates to values up to \textbf{$70\%$} lower. Such a feature implies more sustainable implementations, suitable and desirable for hearing aids or any other similar embedded systems.

This paper presents a novel defense strategy against static power side-channel attacks (PSCAs), a critical threat to cryptographic security. Our method is based on (1) carefully tuning high-Vth versus low-Vth cell selection during synthesis, accounting for both security and timing impact, and (2), at runtime, randomly switching the operation between these cells. This approach serves to significantly obscure static power patterns, which are at the heart of static PSCAs. Our experimental results on a commercial 28nm node show a drastic increase in the effort required for a successful attack, namely up to 96 times more traces. When compared to prior countermeasures, ours incurs little cost, making it a lightweight defense.

This paper introduces a new approach to address the issue of class imbalance in graph neural networks (GNNs) for learning on graph-structured data. Our approach integrates imbalanced node classification and Bias-Variance Decomposition, establishing a theoretical framework that closely relates data imbalance to model variance. We also leverage graph augmentation technique to estimate the variance, and design a regularization term to alleviate the impact of imbalance. Exhaustive tests are conducted on multiple benchmarks, including naturally imbalanced datasets and public-split class-imbalanced datasets, demonstrating that our approach outperforms state-of-the-art methods in various imbalanced scenarios. This work provides a novel theoretical perspective for addressing the problem of imbalanced node classification in GNNs.

This paper introduces a novel numerical approach to achieving smooth lane-change trajectories in autonomous driving scenarios. Our trajectory generation approach leverages particle swarm optimization (PSO) techniques, incorporating Neural Network (NN) predictions for trajectory refinement. The generation of smooth and dynamically feasible trajectories for the lane change maneuver is facilitated by combining polynomial curve fitting with particle propagation, which can account for vehicle dynamics. The proposed planning algorithm is capable of determining feasible trajectories with real-time computation capability. We conduct comparative analyses with two baseline methods for lane changing, involving analytic solutions and heuristic techniques in numerical simulations. The simulation results validate the efficacy and effectiveness of our proposed approach.

This paper presents a novel approach to object completion, with the primary goal of reconstructing a complete object from its partially visible components. Our method, named MaskComp, delineates the completion process through iterative stages of generation and segmentation. In each iteration, the object mask is provided as an additional condition to boost image generation, and, in return, the generated images can lead to a more accurate mask by fusing the segmentation of images. We demonstrate that the combination of one generation and one segmentation stage effectively functions as a mask denoiser. Through alternation between the generation and segmentation stages, the partial object mask is progressively refined, providing precise shape guidance and yielding superior object completion results. Our experiments demonstrate the superiority of MaskComp over existing approaches, e.g., ControlNet and Stable Diffusion, establishing it as an effective solution for object completion.

The paper develops a novel motion model, called Generalized Multi-Speed Dubins Motion Model (GMDM), which extends the Dubins model by considering multiple speeds. While the Dubins model produces time-optimal paths under a constant-speed constraint, these paths could be suboptimal if this constraint is relaxed to include multiple speeds. This is because a constant speed results in a large minimum turning radius, thus producing paths with longer maneuvers and larger travel times. In contrast, multi-speed relaxation allows for slower speed sharp turns, thus producing more direct paths with shorter maneuvers and smaller travel times. Furthermore, the inability of the Dubins model to reduce speed could result in fast maneuvers near obstacles, thus producing paths with high collision risks. In this regard, GMDM provides the motion planners the ability to jointly optimize time and risk by allowing the change of speed along the path. GMDM is built upon the six Dubins path types considering the change of speed on path segments. It is theoretically established that GMDM provides full reachability of the configuration space for any speed selections. Furthermore, it is shown that the Dubins model is a specific case of GMDM for constant speeds. The solutions of GMDM are analytical and suitable for real-time applications. The performance of GMDM in terms of solution quality (i.e., time/time-risk cost) and computation time is comparatively evaluated against the existing motion models in obstacle-free as well as obstacle-rich environments via extensive Monte Carlo simulations. The results show that in obstacle-free environments, GMDM produces near time-optimal paths with significantly lower travel times than the Dubins model while having similar computation times. In obstacle-rich environments, GMDM produces time-risk optimized paths with substantially lower collision risks.

This paper presents a groundbreaking approach to causal inference by integrating continuous normalizing flows (CNFs) with parametric submodels, enhancing their geometric sensitivity and improving upon traditional Targeted Maximum Likelihood Estimation (TMLE). Our method employs CNFs to refine TMLE, optimizing the Cram\'er-Rao bound and transitioning from a predefined distribution $p_0$ to a data-driven distribution $p_1$. We innovate further by embedding Wasserstein gradient flows within Fokker-Planck equations, thus imposing geometric structures that boost the robustness of CNFs, particularly in optimal transport theory. Our approach addresses the disparity between sample and population distributions, a critical factor in parameter estimation bias. We leverage optimal transport and Wasserstein gradient flows to develop causal inference methodologies with minimal variance in finite-sample settings, outperforming traditional methods like TMLE and AIPW. This novel framework, centered on Wasserstein gradient flows, minimizes variance in efficient influence functions under distribution $p_t$. Preliminary experiments showcase our method's superiority, yielding lower mean-squared errors compared to standard flows, thereby demonstrating the potential of geometry-aware normalizing Wasserstein flows in advancing statistical modeling and inference.

This paper investigates the integration of beyond-diagonal reconfigurable intelligent surfaces (BD-RISs) into cell-free massive multiple-input multiple-output (CF-mMIMO) systems, focusing on applications involving simultaneous wireless information and power transfer (SWIPT). The system supports concurrently two user groups: information users (IUs) and energy users (EUs). A BD-RIS is employed to enhance the wireless power transfer (WPT) directed towards the EUs. To comprehensively evaluate the system's performance, we present an analytical framework for the spectral efficiency (SE) of IUs and the average harvested energy (HE) of EUs in the presence of spatial correlation among the BD-RIS elements and for a non-linear energy harvesting circuit. Our findings offer important insights into the transformative potential of BD-RIS, setting the stage for the development of more efficient and effective SWIPT networks. Finally, incorporating a heuristic scattering matrix design at the BD-RIS results in a substantial improvement compared to the scenario with random scattering matrix design.

This study introduces LRDif, a novel diffusion-based framework designed specifically for facial expression recognition (FER) within the context of under-display cameras (UDC). To address the inherent challenges posed by UDC's image degradation, such as reduced sharpness and increased noise, LRDif employs a two-stage training strategy that integrates a condensed preliminary extraction network (FPEN) and an agile transformer network (UDCformer) to effectively identify emotion labels from UDC images. By harnessing the robust distribution mapping capabilities of Diffusion Models (DMs) and the spatial dependency modeling strength of transformers, LRDif effectively overcomes the obstacles of noise and distortion inherent in UDC environments. Comprehensive experiments on standard FER datasets including RAF-DB, KDEF, and FERPlus, LRDif demonstrate state-of-the-art performance, underscoring its potential in advancing FER applications. This work not only addresses a significant gap in the literature by tackling the UDC challenge in FER but also sets a new benchmark for future research in the field.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

北京阿比特科技有限公司