亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The voter process is a classic stochastic process that models the invasion of a mutant trait $A$ (e.g., a new opinion, belief, legend, genetic mutation, magnetic spin) in a population of agents (e.g., people, genes, particles) who share a resident trait $B$, spread over the nodes of a graph. An agent may adopt the trait of one of its neighbors at any time, while the invasion bias $r\in(0,\infty)$ quantifies the stochastic preference towards ($r>1$) or against ($r<1$) adopting $A$ over $B$. Success is measured in terms of the fixation probability, i.e., the probability that eventually all agents have adopted the mutant trait $A$. In this paper we study the problem of fixation probability maximization under this model: given a budget $k$, find a set of $k$ agents to initiate the invasion that maximizes the fixation probability. We show that the problem is NP-hard for both $r>1$ and $r<1$, while the latter case is also inapproximable within any multiplicative factor. On the positive side, we show that when $r>1$, the optimization function is submodular and thus can be greedily approximated within a factor $1-1/e$. An experimental evaluation of some proposed heuristics corroborates our results.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Given a dataset of input states, measurements, and probabilities, is it possible to efficiently predict the measurement probabilities associated with a quantum circuit? Recent work of Caro and Datta (2020) studied the problem of PAC learning quantum circuits in an information theoretic sense, leaving open questions of computational efficiency. In particular, one candidate class of circuits for which an efficient learner might have been possible was that of Clifford circuits, since the corresponding set of states generated by such circuits, called stabilizer states, are known to be efficiently PAC learnable (Rocchetto 2018). Here we provide a negative result, showing that proper learning of CNOT circuits is hard for classical learners unless $\textsf{RP} = \textsf{NP}$. As the classical analogue and subset of Clifford circuits, this naturally leads to a hardness result for Clifford circuits as well. Additionally, we show that if $\textsf{RP} = \textsf{NP}$ then there would exist efficient proper learning algorithms for CNOT and Clifford circuits. By similar arguments, we also find that an efficient proper quantum learner for such circuits exists if and only if $\textsf{NP} \subseteq \textsf{RQP}$.

The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.

Applications of Reinforcement Learning (RL), in which agents learn to make a sequence of decisions despite lacking complete information about the latent states of the controlled system, that is, they act under partial observability of the states, are ubiquitous. Partially observable RL can be notoriously difficult -- well-known information-theoretic results show that learning partially observable Markov decision processes (POMDPs) requires an exponential number of samples in the worst case. Yet, this does not rule out the existence of large subclasses of POMDPs over which learning is tractable. In this paper we identify such a subclass, which we call weakly revealing POMDPs. This family rules out the pathological instances of POMDPs where observations are uninformative to a degree that makes learning hard. We prove that for weakly revealing POMDPs, a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to guarantee polynomial sample complexity. To the best of our knowledge, this is the first provably sample-efficient result for learning from interactions in overcomplete POMDPs, where the number of latent states can be larger than the number of observations.

In this paper, we consider a resilient consensus problem for the multi-agent network where some of the agents are subject to Byzantine attacks and may transmit erroneous state values to their neighbors. In particular, we develop an event-triggered update rule to tackle this problem as well as reduce the communication for each agent. Our approach is based on the mean subsequence reduced (MSR) algorithm with agents being capable to communicate with multi-hop neighbors. Since delays are critical in such an environment, we provide necessary graph conditions for the proposed algorithm to perform well with delays in the communication. We highlight that through multi-hop communication, the network connectivity can be reduced especially in comparison with the common onehop communication case. Lastly, we show the effectiveness of the proposed algorithm by a numerical example.

We give a fast algorithm for sampling uniform solutions of general constraint satisfaction problems (CSPs) in a local lemma regime. The expected running time of our algorithm is near-linear in $n$ and a fixed polynomial in $\Delta$, where $n$ is the number of variables and $\Delta$ is the max degree of constraints. Previously, up to similar conditions, sampling algorithms with running time polynomial in both $n$ and $\Delta$, only existed for the almost atomic case, where each constraint is violated by a small number of forbidden local configurations. Our sampling approach departs from all previous fast algorithms for sampling LLL, which were based on Markov chains. A crucial step of our algorithm is a recursive marginal sampler that is of independent interests. Within a local lemma regime, this marginal sampler can draw a random value for a variable according to its marginal distribution, at a local cost independent of the size of the CSP.

Bayesian policy reuse (BPR) is a general policy transfer framework for selecting a source policy from an offline library by inferring the task belief based on some observation signals and a trained observation model. In this paper, we propose an improved BPR method to achieve more efficient policy transfer in deep reinforcement learning (DRL). First, most BPR algorithms use the episodic return as the observation signal that contains limited information and cannot be obtained until the end of an episode. Instead, we employ the state transition sample, which is informative and instantaneous, as the observation signal for faster and more accurate task inference. Second, BPR algorithms usually require numerous samples to estimate the probability distribution of the tabular-based observation model, which may be expensive and even infeasible to learn and maintain, especially when using the state transition sample as the signal. Hence, we propose a scalable observation model based on fitting state transition functions of source tasks from only a small number of samples, which can generalize to any signals observed in the target task. Moreover, we extend the offline-mode BPR to the continual learning setting by expanding the scalable observation model in a plug-and-play fashion, which can avoid negative transfer when faced with new unknown tasks. Experimental results show that our method can consistently facilitate faster and more efficient policy transfer.

Conditional behavior prediction (CBP) builds up the foundation for a coherent interactive prediction and planning framework that can enable more efficient and less conservative maneuvers in interactive scenarios. In CBP task, we train a prediction model approximating the posterior distribution of target agents' future trajectories conditioned on the future trajectory of an assigned ego agent. However, we argue that CBP may provide overly confident anticipation on how the autonomous agent may influence the target agents' behavior. Consequently, it is risky for the planner to query a CBP model. Instead, we should treat the planned trajectory as an intervention and let the model learn the trajectory distribution under intervention. We refer to it as the interventional behavior prediction (IBP) task. Moreover, to properly evaluate an IBP model with offline datasets, we propose a Shapley-value-based metric to testify if the prediction model satisfies the inherent temporal independence of an interventional distribution. We show that the proposed metric can effectively identify a CBP model violating the temporal independence, which plays an important role when establishing IBP benchmarks.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

北京阿比特科技有限公司