亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predicting the number of defects in a project is critical for project test managers to allocate budget, resources, and schedule for testing, support and maintenance efforts. Software Defect Prediction models predict the number of defects in given projects after training the model with historical defect related information. The majority of defect prediction studies focused on predicting defect-prone modules from methods, and class-level static information, whereas this study predicts defects from project-level information based on a cross-company project dataset. This study utilizes software sizing metrics, effort metrics, and defect density information, and focuses on developing defect prediction models that apply various machine learning algorithms. One notable issue in existing defect prediction studies is the lack of transparency in the developed models. Consequently, the explain-ability of the developed model has been demonstrated using the state-of-the-art post-hoc model-agnostic method called Shapley Additive exPlanations (SHAP). Finally, important features for predicting defects from cross-company project information were identified.

相關內容

Group recommender systems (GRS) identify items to recommend to a group by aggregating group members' individual preferences into a group profile. The preference aggregation strategy used to build the group profile can also be used for predicting the item that a group may decide to choose, i.e., by assuming that the group is applying exactly that strategy. However, predicting the choice of a group is challenging since the RS is not aware of the precise preference aggregation strategy that is going to be used by the group. Hence, the aim of this paper is to validate the research hypothesis that, by using a machine learning approach and a data set of observed group choices, it is possible to predict a group's final choice, better than by using a standard preference aggregation strategy. Inspired by Social Decision Scheme theory, which first tried to address the group choice prediction problem, we search for a group profile definition that, in conjunction with a machine learning model, can be used to accurately predict a group choice. Moreover, to cope with the data scarcity problem, we propose two data augmentation methods, which add synthetic group profiles to the training data, and we hypothesise they can further improve the choice prediction accuracy. We validate our research hypotheses by using a data set containing 282 participants organized in 79 groups. The experiments indicate that the proposed methods outperform baseline aggregation strategies when used for group choice prediction. The proposed method is robust with the presence of missing preference data and achieves a performance superior to what human can achieve on the group choice prediction task. Finally, the proposed data augmentation method can also improve the prediction accuracy. Our approach can be exploited in novel GRSs to identify the items that the group is likely to choose and help the group to make a better choice.

Supervised learning algorithms generally assume the availability of enough memory to store their data model during the training and test phases. However, in the Internet of Things, this assumption is unrealistic when data comes in the form of infinite data streams, or when learning algorithms are deployed on devices with reduced amounts of memory. In this paper, we adapt the online Mondrian forest classification algorithm to work with memory constraints on data streams. In particular, we design five out-of-memory strategies to update Mondrian trees with new data points when the memory limit is reached. Moreover, we design trimming mechanisms to make Mondrian trees more robust to concept drifts under memory constraints. We evaluate our algorithms on a variety of real and simulated datasets, and we conclude with recommendations on their use in different situations: the Extend Node strategy appears as the best out-of-memory strategy in all configurations, whereas different trimming mechanisms should be adopted depending on whether a concept drift is expected. All our methods are implemented in the OrpailleCC open-source library and are ready to be used on embedded systems and connected objects.

Speech enhancement is a demanding task in automated speech processing pipelines, focusing on separating clean speech from noisy channels. Transformer based models have recently bested RNN and CNN models in speech enhancement, however at the same time they are much more computationally expensive and require much more high quality training data, which is always hard to come by. In this paper, we present an improvement for speech enhancement models that maintains the expressiveness of self-attention while significantly reducing model complexity, which we have termed Spectrum Attention Fusion. We carefully construct a convolutional module to replace several self-attention layers in a speech Transformer, allowing the model to more efficiently fuse spectral features. Our proposed model is able to achieve comparable or better results against SOTA models but with significantly smaller parameters (0.58M) on the Voice Bank + DEMAND dataset.

Referring video object segmentation (RVOS) is a task that aims to segment the target object in all video frames based on a sentence describing the object. Previous RVOS methods have achieved significant performance with densely-annotated datasets, whose construction is expensive and time-consuming. To relieve the burden of data annotation while maintaining sufficient supervision for segmentation, we propose a new annotation scheme, in which we label the frame where the object first appears with a mask and use bounding boxes for the subsequent frames. Based on this scheme, we propose a method to learn from this weak annotation. Specifically, we design a cross frame segmentation method, which uses the language-guided dynamic filters to thoroughly leverage the valuable mask annotation and bounding boxes. We further develop a bi-level contrastive learning method to encourage the model to learn discriminative representation at the pixel level. Extensive experiments and ablative analyses show that our method is able to achieve competitive performance without the demand of dense mask annotation. The code will be available at //github.com/wangbo-zhao/WRVOS/.

Many material properties are manifested in the morphological appearance and characterized with microscopic image, such as scanning electron microscopy (SEM). Polymer miscibility is a key physical quantity of polymer material and commonly and intuitively judged by SEM images. However, human observation and judgement for the images is time-consuming, labor-intensive and hard to be quantified. Computer image recognition with machine learning method can make up the defects of artificial judging, giving accurate and quantitative judgement. We achieve automatic miscibility recognition utilizing convolution neural network and transfer learning method, and the model obtains up to 94% accuracy. We also put forward a quantitative criterion for polymer miscibility with this model. The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.

As the development of measuring instruments and computers has accelerated the collection of massive data, functional data analysis (FDA) has gained a surge of attention. FDA is a methodology that treats longitudinal data as a function and performs inference, including regression. Functionalizing data typically involves fitting it with basis functions. However, the number of these functions smaller than the sample size is selected commonly. This paper casts doubt on this convention. Recent statistical theory has witnessed a phenomenon (the so-called double descent) in which excess parameters overcome overfitting and lead to precise interpolation. If we transfer this idea to the choice of the number of bases for functional data, providing an excess number of bases can lead to accurate predictions. We have explored this phenomenon in a functional regression problem and examined its validity through numerical experiments. In addition, through application to real-world datasets, we demonstrated that the double descent goes beyond just theoretical and numerical experiments - it is also important for practical use.

The diffusion model is capable of generating high-quality data through a probabilistic approach. However, it suffers from the drawback of slow generation speed due to the requirement of a large number of time steps. To address this limitation, recent models such as denoising diffusion implicit models (DDIM) focus on generating samples without directly modeling the probability distribution, while models like denoising diffusion generative adversarial networks (GAN) combine diffusion processes with GANs. In the field of speech synthesis, a recent diffusion speech synthesis model called DiffGAN-TTS, utilizing the structure of GANs, has been introduced and demonstrates superior performance in both speech quality and generation speed. In this paper, to further enhance the performance of DiffGAN-TTS, we propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data. Objective metrics such as structural similarity index measure (SSIM), mel-cepstral distortion (MCD), F0 root mean squared error (F0 RMSE), short-time objective intelligibility (STOI), perceptual evaluation of speech quality (PESQ), as well as subjective metrics like mean opinion score (MOS), are used to evaluate the performance of the proposed model. The evaluation results show that the proposed model outperforms recent state-of-the-art models such as FastSpeech2 and DiffGAN-TTS in various metrics. Our implementation and audio samples are located on GitHub.

With the advent of the big data era, the data quality problem is becoming more critical. Among many factors, data with missing values is one primary issue, and thus developing effective imputation models is a key topic in the research community. Recently, a major research direction is to employ neural network models such as self-organizing mappings or automatic encoders for filling missing values. However, these classical methods can hardly discover interrelated features and common features simultaneously among data attributes. Especially, it is a very typical problem for classical autoencoders that they often learn invalid constant mappings, which dramatically hurts the filling performance. To solve the above-mentioned problems, we propose a missing-value-filling model based on a feature-fusion-enhanced autoencoder. We first incorporate into an autoencoder a hidden layer that consists of de-tracking neurons and radial basis function neurons, which can enhance the ability of learning interrelated features and common features. Besides, we develop a missing value filling strategy based on dynamic clustering that is incorporated into an iterative optimization process. This design can enhance the multi-dimensional feature fusion ability and thus improves the dynamic collaborative missing-value-filling performance. The effectiveness of the proposed model is validated by extensive experiments compared to a variety of baseline methods on thirteen data sets.

Recently, researchers have gradually realized that in some cases, the self-supervised pre-training on large-scale Internet data is better than that of high-quality/manually labeled data sets, and multimodal/large models are better than single or bimodal/small models. In this paper, we propose a robust audio representation learning method WavBriVL based on Bridging-Vision-and-Language (BriVL). WavBriVL projects audio, image and text into a shared embedded space, so that multi-modal applications can be realized. We demonstrate the qualitative evaluation of the image generated from WavBriVL as a shared embedded space, with the main purposes of this paper:(1) Learning the correlation between audio and image;(2) Explore a new way of image generation, that is, use audio to generate pictures. Experimental results show that this method can effectively generate appropriate images from audio.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司