亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel approach to determine the evolution of level sets under uncertainties in the velocity fields. This leads to a stochastic description of the level sets. To compute the quantiles of random level sets, we use the stochastic Galerkin method for a hyperbolic reformulation of the level-set equations. A novel intrusive Galerkin formulation is presented and proven hyperbolic. It induces a corresponding finite-volume scheme that is specifically taylored for uncertain velocities.

相關內容

This paper introduces general methodologies for constructing closed-form solutions to several important partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. The covered equations include the isotropic and anisotropic Poisson, Helmholtz, Stokes, and elastostatic equations, as well as the time-harmonic linear elastodynamic and Maxwell equations. Polynomial solutions have recently regained significance in the development of numerical techniques for evaluating volume integral operators and have potential applications in certain kinds of Trefftz finite element methods. Our approach to all of these PDEs relates the particular solution to polynomial solutions of the Poisson and Helmholtz polynomial particular solutions, solutions that can in turn be obtained, respectively, from expansions using homogeneous polynomials and the Neumann series expansion of the operator $(k^2+\Delta)^{-1}$. No matrix inversion is required to compute the solution. The method naturally incorporates divergence constraints on the solution, such as in the case of Maxwell and Stokes flow equations. This work is accompanied by a freely available Julia library, \texttt{PolynomialSolutions.jl}, which implements the proposed methodology in a non-symbolic format and efficiently constructs and provides access to rapid evaluation of the desired solution.

We study a variation of vanilla stochastic gradient descent where the optimizer only has access to a Markovian sampling scheme. These schemes encompass applications that range from decentralized optimization with a random walker (token algorithms), to RL and online system identification problems. We focus on obtaining rates of convergence under the least restrictive assumptions possible on the underlying Markov chain and on the functions optimized. We first unveil the theoretical lower bound for methods that sample stochastic gradients along the path of a Markov chain, making appear a dependency in the hitting time of the underlying Markov chain. We then study Markov chain SGD (MC-SGD) under much milder regularity assumptions than prior works (e.g., no bounded gradients or domain, and infinite state spaces). We finally introduce MC-SAG, an alternative to MC-SGD with variance reduction, that only depends on the hitting time of the Markov chain, therefore obtaining a communication-efficient token algorithm.

Intraday electricity markets play an increasingly important role in balancing the intermittent generation of renewable energy resources, which creates a need for accurate probabilistic price forecasts. However, research to date has focused on univariate approaches, while in many European intraday electricity markets all delivery periods are traded in parallel. Thus, the dependency structure between different traded products and the corresponding cross-product effects cannot be ignored. We aim to fill this gap in the literature by using copulas to model the high-dimensional intraday price return vector. We model the marginal distribution as a zero-inflated Johnson's $S_U$ distribution with location, scale and shape parameters that depend on market and fundamental data. The dependence structure is modelled using latent beta regression to account for the particular market structure of the intraday electricity market, such as overlapping but independent trading sessions for different delivery days. We allow the dependence parameter to be time-varying. We validate our approach in a simulation study for the German intraday electricity market and find that modelling the dependence structure improves the forecasting performance. Additionally, we shed light on the impact of the single intraday coupling (SIDC) on the trading activity and price distribution and interpret our results in light of the market efficiency hypothesis. The approach is directly applicable to other European electricity markets.

Many multivariate data sets exhibit a form of positive dependence, which can either appear globally between all variables or only locally within particular subgroups. A popular notion of positive dependence that allows for localized positivity is positive association. In this work we introduce the notion of extremal positive association for multivariate extremes from threshold exceedances. Via a sufficient condition for extremal association, we show that extremal association generalizes extremal tree models. For H\"usler--Reiss distributions the sufficient condition permits a parametric description that we call the metric property. As the parameter of a H\"usler--Reiss distribution is a Euclidean distance matrix, the metric property relates to research in electrical network theory and Euclidean geometry. We show that the metric property can be localized with respect to a graph and study surrogate likelihood inference. This gives rise to a two-step estimation procedure for locally metrical H\"usler--Reiss graphical models. The second step allows for a simple dual problem, which is implemented via a gradient descent algorithm. Finally, we demonstrate our results on simulated and real data.

Network operators and system administrators are increasingly overwhelmed with incessant cyber-security threats ranging from malicious network reconnaissance to attacks such as distributed denial of service and data breaches. A large number of these attacks could be prevented if the network operators were better equipped with threat intelligence information that would allow them to block or throttle nefarious scanning activities. Network telescopes or "darknets" offer a unique window into observing Internet-wide scanners and other malicious entities, and they could offer early warning signals to operators that would be critical for infrastructure protection and/or attack mitigation. A network telescope consists of unused or "dark" IP spaces that serve no users, and solely passively observes any Internet traffic destined to the "telescope sensor" in an attempt to record ubiquitous network scanners, malware that forage for vulnerable devices, and other dubious activities. Hence, monitoring network telescopes for timely detection of coordinated and heavy scanning activities is an important, albeit challenging, task. The challenges mainly arise due to the non-stationarity and the dynamic nature of Internet traffic and, more importantly, the fact that one needs to monitor high-dimensional signals (e.g., all TCP/UDP ports) to search for "sparse" anomalies. We propose statistical methods to address both challenges in an efficient and "online" manner; our work is validated both with synthetic data as well as real-world data from a large network telescope.

We present an implicit-explicit finite volume scheme for two-fluid single-temperature flow in all Mach number regimes which is based on a symmetric hyperbolic thermodynamically compatible description of the fluid flow. The scheme is stable for large time steps controlled by the interface transport and is computational efficient due to a linear implicit character. The latter is achieved by linearizing along constant reference states given by the asymptotic analysis of the single-temperature model. Thus, the use of a stiffly accurate IMEX Runge Kutta time integration and the centered treatment of pressure based quantities provably guarantee the asymptotic preserving property of the scheme for weakly compressible Euler equations with variable volume fraction. The properties of the first and second order scheme are validated by several numerical test cases.

The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is important for the numerical solution of Poisson's equation and volume integral equations. In this paper, we present a simple and efficient high-order algorithm for computing the Newtonian potential over a planar domain discretized by an unstructured mesh. The algorithm is based on the use of Green's third identity for transforming the Newtonian potential into a collection of layer potentials over the boundaries of the mesh elements, which can be easily evaluated by the Helsing-Ojala method. One important component of our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in the monomial basis, for which we provide extensive justification. The performance of our algorithm is illustrated through several numerical experiments.

Forecasts of multivariate probability distributions are required for a variety of applications. Scoring rules enable the evaluation of forecast accuracy, and comparison between forecasting methods. We propose a theoretical framework for scoring rules for multivariate distributions, which encompasses the existing quadratic score and multivariate continuous ranked probability score. We demonstrate how this framework can be used to generate new scoring rules. In some multivariate contexts, it is a forecast of a level set that is needed, such as a density level set for anomaly detection or the level set of the cumulative distribution as a measure of risk. This motivates consideration of scoring functions for such level sets. For univariate distributions, it is well-established that the continuous ranked probability score can be expressed as the integral over a quantile score. We show that, in a similar way, scoring rules for multivariate distributions can be decomposed to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level set, including density level sets and level sets for cumulative distributions. To compute the scores, we propose a simple numerical algorithm. We perform a simulation study to support our proposals, and we use real data to illustrate usefulness for forecast combining and CoVaR estimation.

Quantiles and expectiles, which are two important concepts and tools in tail risk measurements, can be regarded as an extension of median and mean, respectively. Both of these tail risk measurers can actually be embedded in a common framework of $L_p$ optimization with the absolute loss function ($p=1$) and quadratic loss function ($p=2$), respectively. When 0-1 loss function is frequently used in statistics, machine learning and decision theory, this paper introduces an 0-1 loss function based $L_0$ optimisation problem for tail risk measure and names its solution as modile, which can be regarded as an extension of mode. Mode, as another measure of central tendency, is more robust than expectiles with outliers and easy to compute than quantiles. However, mode based extension for tail risk measure is new. This paper shows that the proposed modiles are not only more conservative than quantiles and expectiles for skewed and heavy-tailed distributions, but also providing or including the unique interpretation of these measures. Further, the modiles can be regarded as a type of generalized quantiles and doubly truncated tail measure whcih have recently attracted a lot of attention in the literature. The asymptotic properties of the corresponding sample-based estimators of modiles are provided, which, together with numerical analysis results, show that the proposed modiles are promising for tail measurement.

A commitment scheme is a cryptographic tool that allows one to commit to a hidden value, with the option to open it later at requested places without revealing the secret itself. Commitment schemes have important applications in zero-knowledge proofs and secure multi-party computation, just to name a few. This survey introduces a few multivariate polynomial commitment schemes that are built from a variety of mathematical structures. We study how Orion is constructed using hash functions; Dory, Bulletproofs, and Vampire using the inner-product argument; Signatures of Correct Computation using polynomial factoring; DARK and Dew using groups of unknown order; and Orion+ using a CP-SNARK. For each protocol, we prove its completeness and state its security assumptions.

北京阿比特科技有限公司