亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stack Overflow and other similar forums are used commonly by developers to seek answers for their software development as well as privacy-related concerns. Recently, ChatGPT has been used as an alternative to generate code or produce responses to developers' questions. In this paper, we aim to understand developers' privacy challenges by evaluating the types of privacy-related questions asked on Stack Overflow. We then conduct a comparative analysis between the accepted responses given by Stack Overflow users and the responses produced by ChatGPT for those extracted questions to identify if ChatGPT could serve as a viable alternative. Our results show that most privacy-related questions are related to choice/consent, aggregation, and identification. Furthermore, our findings illustrate that ChatGPT generates similarly correct responses for about 56% of questions, while for the rest of the responses, the answers from Stack Overflow are slightly more accurate than ChatGPT.

相關內容

Large Language Models (LLMs) could enhance access to the legal system. However, empirical research on their effectiveness in conducting legal tasks is scant. We study securities cases involving cryptocurrencies as one of numerous contexts where AI could support the legal process, studying LLMs' legal reasoning and drafting capabilities. We examine whether a) an LLM can accurately determine which laws are potentially being violated from a fact pattern, and b) whether there is a difference in juror decision-making based on complaints written by a lawyer compared to an LLM. We feed fact patterns from real-life cases to GPT-3.5 and evaluate its ability to determine correct potential violations from the scenario and exclude spurious violations. Second, we had mock jurors assess complaints written by the LLM and lawyers. GPT-3.5's legal reasoning skills proved weak, though we expect improvement in future models, particularly given the violations it suggested tended to be correct (it merely missed additional, correct violations). GPT-3.5 performed better at legal drafting, and jurors' decisions were not statistically significantly associated with the author of the document upon which they based their decisions. Because LLMs cannot satisfactorily conduct legal reasoning tasks, they would be unable to replace lawyers at this stage. However, their drafting skills (though, perhaps, still inferior to lawyers), could provide access to justice for more individuals by reducing the cost of legal services. Our research is the first to systematically study LLMs' legal drafting and reasoning capabilities in litigation, as well as in securities law and cryptocurrency-related misconduct.

Although the open source model bears many advantages in software development, open source projects are always hard to sustain. Previous research on open source sustainability mainly focuses on projects that have already reached a certain level of maturity (e.g., with communities, releases, and downstream projects). However, limited attention is paid to the development of (sustainable) open source projects in their infancy, and we believe an understanding of early sustainability determinants is crucial for project initiators, incubators, newcomers, and users. In this paper, we aim to explore the relationship between early participation factors and long-term project sustainability. We leverage a novel methodology that measures the early participation of 290,255 GitHub projects during the first three months with reference to the Blumberg model, trains an XGBoost model to predict project's two-year sustained activity, and interprets the trained model using LIME. We quantitatively show that early participants have a positive effect on project's future sustained activity if they have prior experience in OSS project incubation and demonstrate concentrated focus and steady commitment. Participation from non-code contributors and detailed contribution documentation also promote project's sustained activity. Compared with individual projects, building a community that consists of more experienced core developers and more active peripheral developers is important for organizational projects. This study provides unique insights into the incubation and recognition of sustainable open source projects, and our interpretable prediction approach can also offer guidance to open source project initiators and newcomers.

Although App updates are frequent and software engineers would like to verify updated features only, automated testing techniques verify entire Apps and are thus wasting resources. We present Continuous Adaptation of Learned Models (CALM), an automated App testing approach that efficiently tests App updates by adapting App models learned when automatically testing previous App versions. CALM focuses on functional testing. Since functional correctness can be mainly verified through the visual inspection of App screens, CALM minimizes the number of App screens to be visualized by software testers while maximizing the percentage of updated methods and instructions exercised. Our empirical evaluation shows that CALM exercises a significantly higher proportion of updated methods and instructions than six state-of-the-art approaches, for the same maximum number of App screens to be visually inspected. Further, in common update scenarios, where only a small fraction of methods are updated, CALM is even quicker to outperform all competing approaches in a more significant way.

With the increasing number and sophistication of malware attacks, malware detection systems based on machine learning (ML) grow in importance. At the same time, many popular ML models used in malware classification are supervised solutions. These supervised classifiers often do not generalize well to novel malware. Therefore, they need to be re-trained frequently to detect new malware specimens, which can be time-consuming. Our work addresses this problem in a hybrid framework of theoretical Quantum ML, combined with feature selection strategies to reduce the data size and malware classifier training time. The preliminary results show that VQC with XGBoost selected features can get a 78.91% test accuracy on the simulator. The average accuracy for the model trained using the features selected with XGBoost was 74% (+- 11.35%) on the IBM 5 qubits machines.

Recently, uncertainty-aware deep learning methods for multiclass labeling problems have been developed that provide calibrated class prediction probabilities and out-of-distribution (OOD) indicators, letting machine learning (ML) consumers and engineers gauge a model's confidence in its predictions. However, this extra neural network prediction information is challenging to scalably convey visually for arbitrary data sources under multiple uncertainty contexts. To address these challenges, we present ScatterUQ, an interactive system that provides targeted visualizations to allow users to better understand model performance in context-driven uncertainty settings. ScatterUQ leverages recent advances in distance-aware neural networks, together with dimensionality reduction techniques, to construct robust, 2-D scatter plots explaining why a model predicts a test example to be (1) in-distribution and of a particular class, (2) in-distribution but unsure of the class, and (3) out-of-distribution. ML consumers and engineers can visually compare the salient features of test samples with training examples through the use of a ``hover callback'' to understand model uncertainty performance and decide follow up courses of action. We demonstrate the effectiveness of ScatterUQ to explain model uncertainty for a multiclass image classification on a distance-aware neural network trained on Fashion-MNIST and tested on Fashion-MNIST (in distribution) and MNIST digits (out of distribution), as well as a deep learning model for a cyber dataset. We quantitatively evaluate dimensionality reduction techniques to optimize our contextually driven UQ visualizations. Our results indicate that the ScatterUQ system should scale to arbitrary, multiclass datasets. Our code is available at //github.com/mit-ll-responsible-ai/equine-webapp

Over the past two decades, recommendation systems (RSs) have used machine learning (ML) solutions to recommend items, e.g., movies, books, and restaurants, to clients of a business or an online platform. Recipe recommendation, however, has not yet received much attention compared to those applications. We introduce RECipe as a multi-purpose recipe recommendation framework with a multi-modal knowledge graph (MMKG) backbone. The motivation behind RECipe is to go beyond (deep) neural collaborative filtering (NCF) by recommending recipes to users when they query in natural language or by providing an image. RECipe consists of 3 subsystems: (1) behavior-based recommender, (2) review-based recommender, and (3) image-based recommender. Each subsystem relies on the embedding representations of entities and relations in the graph. We first obtain (pre-trained) embedding representations of textual entities, such as reviews or ingredients, from a fine-tuned model of Microsoft's MPNet. We initialize the weights of the entities with these embeddings to train our knowledge graph embedding (KGE) model. For the visual component, i.e., recipe images, we develop a KGE-Guided variational autoencoder (KG-VAE) to learn the distribution of images and their latent representations. Once KGE and KG-VAE models are fully trained, we use them as a multi-purpose recommendation framework. For benchmarking, we created two knowledge graphs (KGs) from public datasets on Kaggle for recipe recommendation. Our experiments show that the KGE models have comparable performance to the neural solutions. We also present pre-trained NLP embeddings to address important applications such as zero-shot inference for new users (or the cold start problem) and conditional recommendation with respect to recipe categories. We eventually demonstrate the application of RECipe in a multi-purpose recommendation setting.

Graph neural networks (GNNs) are a type of deep learning models that learning over graphs, and have been successfully applied in many domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques from graph processing to distributed execution. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol.We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on scalable GNNs.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Sources of commonsense knowledge aim to support applications in natural language understanding, computer vision, and knowledge graphs. These sources contain complementary knowledge to each other, which makes their integration desired. Yet, such integration is not trivial because of their different foci, modeling approaches, and sparse overlap. In this paper, we propose to consolidate commonsense knowledge by following five principles. We apply these principles to combine seven key sources into a first integrated CommonSense Knowledge Graph (CSKG). We perform analysis of CSKG and its various text and graph embeddings, showing that CSKG is a well-connected graph and that its embeddings provide a useful entry point to the graph. Moreover, we show the impact of CSKG as a source for reasoning evidence retrieval, and for pre-training language models for generalizable downstream reasoning. CSKG and all its embeddings are made publicly available to support further research on commonsense knowledge integration and reasoning.

In recent years, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO have been published as noteworthy large, cross-domain, and freely available knowledge graphs. Although extensively in use, these knowledge graphs are hard to compare against each other in a given setting. Thus, it is a challenge for researchers and developers to pick the best knowledge graph for their individual needs. In our recent survey, we devised and applied data quality criteria to the above-mentioned knowledge graphs. Furthermore, we proposed a framework for finding the most suitable knowledge graph for a given setting. With this paper we intend to ease the access to our in-depth survey by presenting simplified rules that map individual data quality requirements to specific knowledge graphs. However, this paper does not intend to replace our previously introduced decision-support framework. For an informed decision on which KG is best for you we still refer to our in-depth survey.

北京阿比特科技有限公司