To support the running of human-centric metaverse applications on mobile devices, Unmanned Aerial Vehicle (UAV)-assisted Wireless Powered Mobile Edge Computing (WPMEC) is promising to compensate for limited computational capabilities and energy supplies of mobile devices. The high-speed computational processing demands and significant energy consumption of metaverse applications require joint resource scheduling of multiple devices and UAVs, but existing WPMEC solutions address either device or UAV scheduling due to the complexity of combinatorial optimization. To solve the above challenge, we propose a two-stage alternating optimization algorithm based on multi-task Deep Reinforcement Learning (DRL) to jointly allocate charging time, schedule computation tasks, and optimize trajectory of UAVs and mobile devices in a wireless powered metaverse scenario. First, considering energy constraints of both UAVs and mobile devices, we formulate an optimization problem to maximize the computation efficiency of the system. Second, we propose a heuristic algorithm to efficiently perform time allocation and charging scheduling for mobile devices. Following this, we design a multi-task DRL scheme to make charging scheduling and trajectory design decisions for UAVs. Finally, theoretical analysis and performance results demonstrate that our algorithm exhibits significant advantages over representative methods in terms of convergence speed and average computation efficiency.
This study explores the crucial interplay between aggregators and building occupants in activating flexibility through Demand Response (DR) programs, with a keen focus on achieving robust decarbonization and fortifying the resilience of the energy system amidst the uncertainties presented by Renewable Energy Sources (RES). Firstly, it introduces a methodology of optimizing aggregated flexibility provision strategies in environments with limited data, utilizing Discrete Fourier Transformation (DFT) and clustering techniques to identify building occupant's activity patterns. Secondly, the study assesses the disaggregated flexibility provision of Heating Ventilation and Air Conditioning (HVAC) systems during DR events, employing machine learning and optimization techniques for precise, device-level analysis. The first approach offers a non-intrusive pathway for aggregators to provide flexibility services in environments of a single smart meter for the whole building's consumption, while the second approach carefully considers building occupants' thermal comfort profiles, while maximizing flexibility in case of existence of dedicated smart meters to the HVAC systems. Through the application of data-driven techniques and encompassing case studies from both industrial and residential buildings, this paper not only unveils pivotal opportunities for aggregators in the balancing and emerging flexibility markets but also successfully develops end-to-end practical tools for aggregators. Furthermore, the efficacy of this tool is validated through detailed case studies, substantiating its operational capability and contributing to the evolution of a resilient and efficient energy system.
Vision is a major component in several digital technologies and tools used in agriculture. The object detector, You Look Only Once (YOLO), has gained popularity in agriculture in a relatively short span due to its state-of-the-art performance. YOLO offers real-time detection with good accuracy and is implemented in various agricultural tasks, including monitoring, surveillance, sensing, automation, and robotics. The research and application of YOLO in agriculture are accelerating rapidly but are fragmented and multidisciplinary. Moreover, the performance characteristics (i.e., accuracy, speed, computation) of the object detector influence the rate of technology implementation and adoption in agriculture. Thus, the study aims to collect extensive literature to document and critically evaluate the advances and application of YOLO for agricultural object recognition. First, we conducted a bibliometric review of 257 articles to understand the scholarly landscape of YOLO in agricultural domain. Secondly, we conducted a systematic review of 30 articles to identify current knowledge, gaps, and modifications in YOLO for specific agricultural tasks. The study critically assesses and summarizes the information on YOLO's end-to-end learning approach, including data acquisition, processing, network modification, integration, and deployment. We also discussed task-specific YOLO algorithm modification and integration to meet the agricultural object or environment-specific challenges. In general, YOLO-integrated digital tools and technologies show the potential for real-time, automated monitoring, surveillance, and object handling to reduce labor, production cost, and environmental impact while maximizing resource efficiency. The study provides detailed documentation and significantly advances the existing knowledge on applying YOLO in agriculture, which can greatly benefit the scientific community.
Medical visual question answering (VQA) is a challenging multimodal task, where Vision-Language Pre-training (VLP) models can effectively improve the generalization performance. However, most methods in the medical field treat VQA as an answer classification task which is difficult to transfer to practical application scenarios. Additionally, due to the privacy of medical images and the expensive annotation process, large-scale medical image-text pairs datasets for pretraining are severely lacking. In this paper, we propose a large-scale MultI-task Self-Supervised learning based framework (MISS) for medical VQA tasks. Unlike existing methods, we treat medical VQA as a generative task. We unify the text encoder and multimodal encoder and align image-text features through multi-task learning. Furthermore, we propose a Transfer-and-Caption method that extends the feature space of single-modal image datasets using large language models (LLMs), enabling those traditional medical vision field task data to be applied to VLP. Experiments show that our method achieves excellent results with fewer multimodal datasets and demonstrates the advantages of generative VQA models. The code and model weights will be released upon the paper's acceptance.
A key challenge for ultra-low-power (ULP) devices is handling peripheral linking, where the main central processing unit (CPU) periodically mediates the interaction among multiple peripherals following wake-up events. Current solutions address this problem by either integrating event interconnects that route single-wire event lines among peripherals or by general-purpose I/O processors, with a strong trade-off between the latency, efficiency of the former, and the flexibility of the latter. In this paper, we present an open-source, peripheral-agnostic, lightweight, and flexible Peripheral Event Linking System (PELS) that combines dedicated event routing with a tiny I/O processor. With the proposed approach, the power consumption of a linking event is reduced by 2.5 times compared to a baseline relying on the main core for the event-linking process, at a low area of just 7 kGE in its minimal configuration, when integrated into a ULP RISC-V IoT processor.
Person-job fit is an essential part of online recruitment platforms in serving various downstream applications like Job Search and Candidate Recommendation. Recently, pretrained large language models have further enhanced the effectiveness by leveraging richer textual information in user profiles and job descriptions apart from user behavior features and job metadata. However, the general domain-oriented design struggles to capture the unique structural information within user profiles and job descriptions, leading to a loss of latent semantic correlations. We propose TAROT, a hierarchical multitask co-pretraining framework, to better utilize structural and semantic information for informative text embeddings. TAROT targets semi-structured text in profiles and jobs, and it is co-pretained with multi-grained pretraining tasks to constrain the acquired semantic information at each level. Experiments on a real-world LinkedIn dataset show significant performance improvements, proving its effectiveness in person-job fit tasks.
We present a new representation learning framework, Intensity Profile Projection, for continuous-time dynamic network data. Given triples $(i,j,t)$, each representing a time-stamped ($t$) interaction between two entities ($i,j$), our procedure returns a continuous-time trajectory for each node, representing its behaviour over time. The framework consists of three stages: estimating pairwise intensity functions, e.g. via kernel smoothing; learning a projection which minimises a notion of intensity reconstruction error; and constructing evolving node representations via the learned projection. The trajectories satisfy two properties, known as structural and temporal coherence, which we see as fundamental for reliable inference. Moreoever, we develop estimation theory providing tight control on the error of any estimated trajectory, indicating that the representations could even be used in quite noise-sensitive follow-on analyses. The theory also elucidates the role of smoothing as a bias-variance trade-off, and shows how we can reduce the level of smoothing as the signal-to-noise ratio increases on account of the algorithm `borrowing strength' across the network.
One way to enhance the reasoning capability of Large Language Models (LLMs) is to conduct Supervised Fine-Tuning (SFT) using Chain-of-Thought (CoT) annotations. This approach does not show sufficiently strong generalization ability, however, because the training only relies on the given CoT data. In math problem-solving, for example, there is usually only one annotated reasoning path for each question in the training data. Intuitively, it would be better for the algorithm to learn from multiple annotated reasoning paths given a question. To address this issue, we propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning, with math problem-solving as an example. ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper, to further fine-tune the model, where an abundance of reasoning paths are automatically sampled given the question and the rewards are naturally derived from the ground-truth answers. Extensive experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT, and the performance can be potentially further boosted by combining inference-time strategies such as majority voting and re-ranking. Note that ReFT obtains the improvement by learning from the same training questions as SFT, without relying on extra or augmented training questions. This indicates a superior generalization ability for ReFT.
Online reviews in the form of user-generated content (UGC) significantly impact consumer decision-making. However, the pervasive issue of not only human fake content but also machine-generated content challenges UGC's reliability. Recent advances in Large Language Models (LLMs) may pave the way to fabricate indistinguishable fake generated content at a much lower cost. Leveraging OpenAI's GPT-4-Turbo and DALL-E-2 models, we craft AiGen-FoodReview, a multi-modal dataset of 20,144 restaurant review-image pairs divided into authentic and machine-generated. We explore unimodal and multimodal detection models, achieving 99.80% multimodal accuracy with FLAVA. We use attributes from readability and photographic theories to score reviews and images, respectively, demonstrating their utility as hand-crafted features in scalable and interpretable detection models, with comparable performance. The paper contributes by open-sourcing the dataset and releasing fake review detectors, recommending its use in unimodal and multimodal fake review detection tasks, and evaluating linguistic and visual features in synthetic versus authentic data.
Introducing HyperSense, our co-designed hardware and software system efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy-efficient low-precision ADC, diminishing machine learning system costs. Leveraging neurally-inspired HyperDimensional Computing (HDC), HyperSense analyzes real-time raw low-precision sensor data, offering advantages in handling noise, memory-centricity, and real-time learning. Our proposed HyperSense model combines high-performance software for object detection with real-time hardware prediction, introducing the novel concept of Intelligent Sensor Control. Comprehensive software and hardware evaluations demonstrate our solution's superior performance, evidenced by the highest Area Under the Curve (AUC) and sharpest Receiver Operating Characteristic (ROC) curve among lightweight models. Hardware-wise, our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real-time data processing across diverse applications.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.