亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an in-depth exploration of Meta Prompting, a novel technique that revolutionizes the way large language models (LLMs), multi-modal foundation models, and AI systems approach problem-solving and data interpretation. Meta Prompting, rooted in type theory and category theory, prioritizes the structure and syntax of information, providing a unique framework that transcends traditional content-focused methods. We delve into the formal definitions of Meta Prompting, contrasting it with Few-Shot Prompting, and highlight its applicability and superiority in various AI applications. Key to this exploration is the expansion of Meta Prompting into the realm of complex reasoning. Here, we demonstrate how this technique adeptly breaks down intricate problems into manageable sub-problems, facilitating a step-by-step, detailed approach to problem-solving. This method proves especially advantageous in terms of token efficiency and offering a fair comparison in problem-solving scenarios, standing out against few-shot example approaches. Furthermore, the paper breaks new ground by extending Meta Prompting into multi-modal foundation model settings. This extension addresses the integration of diverse data types, such as images, audio, and video, within the structured framework of Meta Prompting, highlighting both the challenges and the vast potential of this approach in handling complex, multi-faceted data (The code is available at //github.com/meta-prompting/meta-prompting).

相關內容

We study universal deepfake detection. Our goal is to detect synthetic images from a range of generative AI approaches, particularly from emerging ones which are unseen during training of the deepfake detector. Universal deepfake detection requires outstanding generalization capability. Motivated by recently proposed masked image modeling which has demonstrated excellent generalization in self-supervised pre-training, we make the first attempt to explore masked image modeling for universal deepfake detection. We study spatial and frequency domain masking in training deepfake detectors. Based on empirical analysis, we propose a novel deepfake detector via frequency masking. Our focus on frequency domain is different from the majority, which primarily target spatial domain detection. Our comparative analyses reveal substantial performance gains over existing methods. Code and models are publicly available.

Neural Radiances Fields (NeRF) and their extensions have shown great success in representing 3D scenes and synthesizing novel-view images. However, most NeRF methods take in low-dynamic-range (LDR) images, which may lose details, especially with nonuniform illumination. Some previous NeRF methods attempt to introduce high-dynamic-range (HDR) techniques but mainly target static scenes. To extend HDR NeRF methods to wider applications, we propose a dynamic HDR NeRF framework, named HDR-HexPlane, which can learn 3D scenes from dynamic 2D images captured with various exposures. A learnable exposure mapping function is constructed to obtain adaptive exposure values for each image. Based on the monotonically increasing prior, a camera response function is designed for stable learning. With the proposed model, high-quality novel-view images at any time point can be rendered with any desired exposure. We further construct a dataset containing multiple dynamic scenes captured with diverse exposures for evaluation. All the datasets and code are available at \url{//guanjunwu.github.io/HDR-HexPlane/}.

Inversion methods, such as Textual Inversion, generate personalized images by incorporating concepts of interest provided by user images. However, existing methods often suffer from overfitting issues, where the dominant presence of inverted concepts leads to the absence of other desired concepts. It stems from the fact that during inversion, the irrelevant semantics in the user images are also encoded, forcing the inverted concepts to occupy locations far from the core distribution in the embedding space. To address this issue, we propose a method that guides the inversion process towards the core distribution for compositional embeddings. Additionally, we introduce a spatial regularization approach to balance the attention on the concepts being composed. Our method is designed as a post-training approach and can be seamlessly integrated with other inversion methods. Experimental results demonstrate the effectiveness of our proposed approach in mitigating the overfitting problem and generating more diverse and balanced compositions of concepts in the synthesized images. The source code is available at //github.com/zhangxulu1996/Compositional-Inversion.

A jump cut offers an abrupt, sometimes unwanted change in the viewing experience. We present a novel framework for smoothing these jump cuts, in the context of talking head videos. We leverage the appearance of the subject from the other source frames in the video, fusing it with a mid-level representation driven by DensePose keypoints and face landmarks. To achieve motion, we interpolate the keypoints and landmarks between the end frames around the cut. We then use an image translation network from the keypoints and source frames, to synthesize pixels. Because keypoints can contain errors, we propose a cross-modal attention scheme to select and pick the most appropriate source amongst multiple options for each key point. By leveraging this mid-level representation, our method can achieve stronger results than a strong video interpolation baseline. We demonstrate our method on various jump cuts in the talking head videos, such as cutting filler words, pauses, and even random cuts. Our experiments show that we can achieve seamless transitions, even in the challenging cases where the talking head rotates or moves drastically in the jump cut.

Quantization (Alistarh et al., 2017) is an important (stochastic) compression technique that reduces the volume of transmitted bits during each communication round in distributed model training. Suresh et al. (2022) introduce correlated quantizers and show their advantages over independent counterparts by analyzing distributed SGD communication complexity. We analyze the forefront distributed non-convex optimization algorithm MARINA (Gorbunov et al., 2022) utilizing the proposed correlated quantizers and show that it outperforms the original MARINA and distributed SGD of Suresh et al. (2022) with regard to the communication complexity. We significantly refine the original analysis of MARINA without any additional assumptions using the weighted Hessian variance (Tyurin et al., 2022), and then we expand the theoretical framework of MARINA to accommodate a substantially broader range of potentially correlated and biased compressors, thus dilating the applicability of the method beyond the conventional independent unbiased compressor setup. Extensive experimental results corroborate our theoretical findings.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Contextual embeddings, such as ELMo and BERT, move beyond global word representations like Word2Vec and achieve ground-breaking performance on a wide range of natural language processing tasks. Contextual embeddings assign each word a representation based on its context, thereby capturing uses of words across varied contexts and encoding knowledge that transfers across languages. In this survey, we review existing contextual embedding models, cross-lingual polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

北京阿比特科技有限公司