The interpretability of deep neural networks has become a subject of great interest within the medical and healthcare domain. This attention stems from concerns regarding transparency, legal and ethical considerations, and the medical significance of predictions generated by these deep neural networks in clinical decision support systems. To address this matter, our study delves into the application of four well-established interpretability methods: Local Interpretable Model-agnostic Explanations (LIME), Shapley Additive exPlanations (SHAP), Gradient-weighted Class Activation Mapping (Grad-CAM), and Layer-wise Relevance Propagation (LRP). Leveraging the approach of transfer learning with a multi-label-multi-class chest radiography dataset, we aim to interpret predictions pertaining to specific pathology classes. Our analysis encompasses both single-label and multi-label predictions, providing a comprehensive and unbiased assessment through quantitative and qualitative investigations, which are compared against human expert annotation. Notably, Grad-CAM demonstrates the most favorable performance in quantitative evaluation, while the LIME heatmap score segmentation visualization exhibits the highest level of medical significance. Our research underscores both the outcomes and the challenges faced in the holistic approach adopted for assessing these interpretability methods and suggests that a multimodal-based approach, incorporating diverse sources of information beyond chest radiography images, could offer additional insights for enhancing interpretability in the medical domain.
I introduce a unified framework for interpreting neural network classifiers tailored toward automated scientific discovery. In contrast to neural network-based regression, for classification, it is in general impossible to find a one-to-one mapping from the neural network to a symbolic equation even if the neural network itself bases its classification on a quantity that can be written as a closed-form equation. In this paper, I embed a trained neural network into an equivalence class of classifying functions that base their decisions on the same quantity. I interpret neural networks by finding an intersection between this equivalence class and human-readable equations defined by the search space of symbolic regression. The approach is not limited to classifiers or full neural networks and can be applied to arbitrary neurons in hidden layers or latent spaces or to simplify the process of interpreting neural network regressors.
Emotions are integral to human social interactions, with diverse responses elicited by various situational contexts. Particularly, the prevalence of negative emotional states has been correlated with negative outcomes for mental health, necessitating a comprehensive analysis of their occurrence and impact on individuals. In this paper, we introduce a novel dataset named DepressionEmo designed to detect 8 emotions associated with depression by 6037 examples of long Reddit user posts. This dataset was created through a majority vote over inputs by zero-shot classifications from pre-trained models and validating the quality by annotators and ChatGPT, exhibiting an acceptable level of interrater reliability between annotators. The correlation between emotions, their distribution over time, and linguistic analysis are conducted on DepressionEmo. Besides, we provide several text classification methods classified into two groups: machine learning methods such as SVM, XGBoost, and Light GBM; and deep learning methods such as BERT, GAN-BERT, and BART. The pretrained BART model, bart-base allows us to obtain the highest F1- Macro of 0.76, showing its outperformance compared to other methods evaluated in our analysis. Across all emotions, the highest F1-Macro value is achieved by suicide intent, indicating a certain value of our dataset in identifying emotions in individuals with depression symptoms through text analysis. The curated dataset is publicly available at: //github.com/abuBakarSiddiqurRahman/DepressionEmo.
We consider the problem of cross-sensor domain adaptation in the context of LiDAR-based 3D object detection and propose Stationary Object Aggregation Pseudo-labelling (SOAP) to generate high quality pseudo-labels for stationary objects. In contrast to the current state-of-the-art in-domain practice of aggregating just a few input scans, SOAP aggregates entire sequences of point clouds at the input level to reduce the sensor domain gap. Then, by means of what we call quasi-stationary training and spatial consistency post-processing, the SOAP model generates accurate pseudo-labels for stationary objects, closing a minimum of 30.3% domain gap compared to few-frame detectors. Our results also show that state-of-the-art domain adaptation approaches can achieve even greater performance in combination with SOAP, in both the unsupervised and semi-supervised settings.
Deep neural networks have shown remarkable performance in image classification. However, their performance significantly deteriorates with corrupted input data. Domain generalization methods have been proposed to train robust models against out-of-distribution data. Data augmentation in the frequency domain is one of such approaches that enable a model to learn phase features to establish domain-invariant representations. This approach changes the amplitudes of the input data while preserving the phases. However, using fixed phases leads to susceptibility to phase fluctuations because amplitudes and phase fluctuations commonly occur in out-of-distribution. In this study, to address this problem, we introduce an approach using finite variation of the phases of input data rather than maintaining fixed phases. Based on the assumption that the degree of domain-invariant features varies for each phase, we propose a method to distinguish phases based on this degree. In addition, we propose a method called vital phase augmentation (VIPAug) that applies the variation to the phases differently according to the degree of domain-invariant features of given phases. The model depends more on the vital phases that contain more domain-invariant features for attaining robustness to amplitude and phase fluctuations. We present experimental evaluations of our proposed approach, which exhibited improved performance for both clean and corrupted data. VIPAug achieved SOTA performance on the benchmark CIFAR-10 and CIFAR-100 datasets, as well as near-SOTA performance on the ImageNet-100 and ImageNet datasets. Our code is available at //github.com/excitedkid/vipaug.
Testing network effects in weighted directed networks is a foundational problem in econometrics, sociology, and psychology. Yet, the prevalent edge dependency poses a significant methodological challenge. Most existing methods are model-based and come with stringent assumptions, limiting their applicability. In response, we introduce a novel, fully nonparametric framework that requires only minimal regularity assumptions. While inspired by recent developments in $U$-statistic literature (arXiv:1712.00771, arXiv:2004.06615), our approach notably broadens their scopes. Specifically, we identified and carefully addressed the challenge of indeterminate degeneracy in the test statistics $-$ a problem that aforementioned tools do not handle. We established Berry-Esseen type bound for the accuracy of type-I error rate control. Using original analysis, we also proved the minimax optimality of our test's power. Simulations underscore the superiority of our method in computation speed, accuracy, and numerical robustness compared to competing methods. We also applied our method to the U.S. faculty hiring network data and discovered intriguing findings.
Inter-organizational business processes involve multiple independent organizations collaborating to achieve mutual interests. Process mining techniques have the potential to allow these organizations to enhance operational efficiency, improve performance, and deepen the understanding of their business based on the recorded process event data. However, inter-organizational process mining faces substantial challenges, including topical secrecy concerns: The involved organizations may not be willing to expose their own data to run mining algorithms jointly with their counterparts or third parties. In this paper, we introduce CONFINE, a novel approach that unlocks process mining on multiple actors' process event data while safeguarding the secrecy and integrity of the original records in an inter-organizational business setting. To ensure that the phases of the presented interaction protocol are secure and that the processed information is hidden from involved and external actors alike, our approach resorts to a decentralized architecture comprised of trusted applications running in Trusted Execution Environments (TEEs). We show the feasibility of our solution by showcasing its application to a healthcare scenario and evaluating our implementation in terms of memory usage and scalability on real-world event logs.
Deep neural networks (DNNs) are well known to be vulnerable to adversarial examples (AEs). In addition, AEs have adversarial transferability, which means AEs generated for a source model can fool another black-box model (target model) with a non-trivial probability. In previous studies, it was confirmed that the vision transformer (ViT) is more robust against the property of adversarial transferability than convolutional neural network (CNN) models such as ConvMixer, and moreover encrypted ViT is more robust than ViT without any encryption. In this article, we propose a random ensemble of encrypted ViT models to achieve much more robust models. In experiments, the proposed scheme is verified to be more robust against not only black-box attacks but also white-box ones than convention methods.
The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.
Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.