亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The propagation delay is non-negligible in underwater acoustic networks (UANs) since the propagation speed is five orders of magnitude smaller than the speed of light. In this case, space and time factors are strongly coupled to determine the collisions of packet transmissions. To this end, this paper analyzes the impact of spatial-time coupling on slotted medium access control (MAC). We find that both inter-slot and intra-slot collisions may exist, and the inter-slot collision may span multiple slots. The sending slot dependent interference regions could be an annulus inside the whole transmission range. It is pointed out that there exist collision-free regions when a guard interval larger than a packet duration is used in the slot setting. In this sense, the long slot brings spatial reuse in a transmission range. However, we further find that the successful transmission probabilities and throughput are the same for the slot lengths of one packet duration and two packet durations. Simulation results show that the maximum successful transmission probability and throughput can be achieved by a guard interval less than a packet duration, which is much shorter than the existing slot setting in typical Slotted-ALOHA. Simulations also show that the spatial impact is greater for vertical transmission than for horizontal transmissions due to the longer vertical transmission range in three-dimensional UANs.

相關內容

In this work we propose and analyze an extension of the approximate component mode synthesis (ACMS) method to the heterogeneous Helmholtz equation. The ACMS method has originally been introduced by Hetmaniuk and Lehoucq as a multiscale method to solve elliptic partial differential equations. The ACMS method uses a domain decomposition to separate the numerical approximation by splitting the variational problem into two independent parts: local Helmholtz problems and a global interface problem. While the former are naturally local and decoupled such that they can be easily solved in parallel, the latter requires the construction of suitable local basis functions relying on local eigenmodes and suitable extensions. We carry out a full error analysis of this approach focusing on the case where the domain decomposition is kept fixed, but the number of eigenfunctions is increased. The theoretical results in this work are supported by numerical experiments verifying algebraic convergence for the method. In certain, practically relevant cases, even exponential convergence for the local Helmholtz problems can be achieved without oversampling.

The possibility of automatically classifying high frequency sub-bottom acoustic reflections collected from an Autonomous Underwater Robot is investigated in this paper. In field surveys of Cobalt-rich Manganese Crusts (Mn-crusts), existing methods relies on visual confirmation of seafloor from images and thickness measurements using the sub-bottom probe. Using these visual classification results as ground truth, an autoencoder is trained to extract latent features from bundled acoustic reflections. A Support Vector Machine classifier is then trained to classify the latent space to idetify seafloor classes. Results from data collected from seafloor at 1500m deep regions of Mn-crust showed an accuracy of about 70%.

This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean-covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.

Temporal connectionist temporal classification (CTC)-based automatic speech recognition (ASR) is one of the most successful end to end (E2E) ASR frameworks. However, due to the token independence assumption in decoding, an external language model (LM) is required which destroys its fast parallel decoding property. Several studies have been proposed to transfer linguistic knowledge from a pretrained LM (PLM) to the CTC based ASR. Since the PLM is built from text while the acoustic model is trained with speech, a cross-modal alignment is required in order to transfer the context dependent linguistic knowledge from the PLM to acoustic encoding. In this study, we propose a novel cross-modal alignment algorithm based on optimal transport (OT). In the alignment process, a transport coupling matrix is obtained using OT, which is then utilized to transform a latent acoustic representation for matching the context-dependent linguistic features encoded by the PLM. Based on the alignment, the latent acoustic feature is forced to encode context dependent linguistic information. We integrate this latent acoustic feature to build conformer encoder-based CTC ASR system. On the AISHELL-1 data corpus, our system achieved 3.96% and 4.27% character error rate (CER) for dev and test sets, respectively, which corresponds to relative improvements of 28.39% and 29.42% compared to the baseline conformer CTC ASR system without cross-modal knowledge transfer.

This study investigates the interconnections between the traditional Fokker-Planck Equation (FPE) and its fractal counterpart (FFPE), utilizing fractal derivatives. By examining the continuous approximation of fractal derivatives in the FPE, it derives the Plastino-Plastino Equation (PPE), which is commonly associated with Tsallis Statistics. This work deduces the connections between the entropic index and the geometric quantities related to the fractal dimension. Furthermore, it analyzes the implications of these relationships on the dynamics of systems in fractal spaces. In order to assess the effectiveness of both equations, numerical solutions are compared within the context of complex systems dynamics, specifically examining the behaviours of quark-gluon plasma (QGP). The FFPE provides an appropriate description of the dynamics of fractal systems by accounting for the fractal nature of the momentum space, exhibiting distinct behaviours compared to the traditional FPE due to the system's fractal nature. The findings indicate that the fractal equation and its continuous approximation yield similar results in studying dynamics, thereby allowing for interchangeability based on the specific problem at hand.

In this paper we revisit the classical Cauchy problem for Laplace's equation as well as two further related problems in the light of regularisation of this highly ill-conditioned problem by replacing integer derivatives with fractional ones. We do so in the spirit of quasi reversibility, replacing a classically severely ill-posed PDE problem by a nearby well-posed or only mildly ill-posed one. In order to be able to make use of the known stabilising effect of one-dimensional fractional derivatives of Abel type we work in a particular rectangular (in higher space dimensions cylindrical) geometry. We start with the plain Cauchy problem of reconstructing the values of a harmonic function inside this domain from its Dirichlet and Neumann trace on part of the boundary (the cylinder base) and explore three options for doing this with fractional operators. The two other related problems are the recovery of a free boundary and then this together with simultaneous recovery of the impedance function in the boundary condition. Our main technique here will be Newton's method. The paper contains numerical reconstructions and convergence results for the devised methods.

Tackling climate change by reducing and eventually eliminating carbon emissions is a significant milestone on the path toward establishing an environmentally sustainable society. As we transition into the exascale era, marked by an increasing demand and scale of HPC resources, the HPC community must embrace the challenge of reducing carbon emissions from designing and operating modern HPC systems. In this position paper, we describe challenges and highlight different opportunities that can aid HPC sites in reducing the carbon footprint of modern HPC systems.

Time-parallel time integration has received a lot of attention in the high performance computing community over the past two decades. Indeed, it has been shown that parallel-in-time techniques have the potential to remedy one of the main computational drawbacks of parallel-in-space solvers. In particular, it is well-known that for large-scale evolution problems space parallelization saturates long before all processing cores are effectively used on today's large scale parallel computers. Among the many approaches for time-parallel time integration, ParaDiag schemes have proved themselves to be a very effective approach. In this framework, the time stepping matrix or an approximation thereof is diagonalized by Fourier techniques, so that computations taking place at different time steps can be indeed carried out in parallel. We propose here a new ParaDiag algorithm combining the Sherman-Morrison-Woodbury formula and Krylov techniques. A panel of diverse numerical examples illustrates the potential of our new solver. In particular, we show that it performs very well compared to different ParaDiag algorithms recently proposed in the literature.

The eigenvalue method, suggested by the developer of the extensively used Analytic Hierarchy Process methodology, exhibits right-left asymmetry: the priorities derived from the right eigenvector do not necessarily coincide with the priorities derived from the reciprocal left eigenvector. This paper offers a comprehensive numerical experiment to compare the two eigenvector-based weighting procedures and their reasonable alternative of the row geometric mean with respect to four measures. The underlying pairwise comparison matrices are constructed randomly with different dimensions and levels of inconsistency. The disagreement between the two eigenvectors turns out to be not always a monotonic function of these important characteristics of the matrix. The ranking contradictions can affect alternatives with relatively distant priorities. The row geometric mean is found to be almost at the midpoint between the right and inverse left eigenvectors, making it a straightforward compromise between them.

This survey explores modern approaches for computing low-rank approximations of high-dimensional matrices by means of the randomized SVD, randomized subspace iteration, and randomized block Krylov iteration. The paper compares the procedures via theoretical analyses and numerical studies to highlight how the best choice of algorithm depends on spectral properties of the matrix and the computational resources available. Despite superior performance for many problems, randomized block Krylov iteration has not been widely adopted in computational science. The paper strengthens the case for this method in three ways. First, it presents new pseudocode that can significantly reduce computational costs. Second, it provides a new analysis that yields simple, precise, and informative error bounds. Last, it showcases applications to challenging scientific problems, including principal component analysis for genetic data and spectral clustering for molecular dynamics data.

北京阿比特科技有限公司