亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we propose a new finite element method for solving elliptic optimal control problems with pointwise state constraints, including the distributed controls and the Dirichlet or Neumann boundary controls. The main idea is to use energy space regularizations in the objective functional, while the equivalent representations of the energy space norms, i.e., the $H^{-1}(\Omega)$-norm for the distributed control, the $H^{1/2}(\Gamma)$-norm for the Dirichlet control and the $H^{-1/2}(\Gamma)$-norm for the Neumann control, enable us to transform the optimal control problem into an elliptic variational inequality involving only the state variable. The elliptic variational inequalities are second order for the three cases, and include additional equality constraints for Dirichlet or Neumann boundary control problems. Standard $C^0$ finite elements can be used to solve the resulted variational inequality. We provide preliminary a priori error estimates for the new algorithm for solving distributed control problems. Extensive numerical experiments are carried out to validate the accuracy of the new algorithm.

相關內容

Trajectory optimization is a powerful tool for robot motion planning and control. State-of-the-art general-purpose nonlinear programming solvers are versatile, handle constraints effectively and provide a high numerical robustness, but they are slow because they do not fully exploit the optimal control problem structure at hand. Existing structure-exploiting solvers are fast, but they often lack techniques to deal with nonlinearity or rely on penalty methods to enforce (equality or inequality) path constraints. This work presents Fatrop: a trajectory optimization solver that is fast and benefits from the salient features of general-purpose nonlinear optimization solvers. The speed-up is mainly achieved through the integration of a specialized linear solver, based on a Riccati recursion that is generalized to also support stagewise equality constraints. To demonstrate the algorithm's potential, it is benchmarked on a set of robot problems that are challenging from a numerical perspective, including problems with a minimum-time objective and no-collision constraints. The solver is shown to solve problems for trajectory generation of a quadrotor, a robot manipulator and a truck-trailer problem in a few tens of milliseconds. The algorithm's C++-code implementation accompanies this work as open source software, released under the GNU Lesser General Public License (LGPL). This software framework may encourage and enable the robotics community to use trajectory optimization in more challenging applications.

This paper introduces a new method of discretization that collocates both endpoints of the domain and enables the complete convergence of the costate variables associated with the Hamilton boundary-value problem. This is achieved through the inclusion of an \emph{exceptional sample} to the roots of the Legendre-Lobatto polynomial, thus promoting the associated differentiation matrix to be full-rank. We study the location of the new sample such that the differentiation matrix is the most robust to perturbations and we prove that this location is also the choice that mitigates the Runge phenomenon associated with polynomial interpolation. Two benchmark problems are successfully implemented in support of our theoretical findings. The new method is observed to converge exponentially with the number of discretization points used.

The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper begins with a derivation of the latent variable proximal point (LVPP) method: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive (Bayesian) barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.

Gaussian graphical models are nowadays commonly applied to the comparison of groups sharing the same variables, by jointy learning their independence structures. We consider the case where there are exactly two dependent groups and the association structure is represented by a family of coloured Gaussian graphical models suited to deal with paired data problems. To learn the two dependent graphs, together with their across-graph association structure, we implement a fused graphical lasso penalty. We carry out a comprehensive analysis of this approach, with special attention to the role played by some relevant submodel classes. In this way, we provide a broad set of tools for the application of Gaussian graphical models to paired data problems. These include results useful for the specification of penalty values in order to obtain a path of lasso solutions and an ADMM algorithm that solves the fused graphical lasso optimization problem. Finally, we present an application of our method to cancer genomics where it is of interest to compare cancer cells with a control sample from histologically normal tissues adjacent to the tumor. All the methods described in this article are implemented in the $\texttt{R}$ package $\texttt{pdglasso}$ availabe at: //github.com/savranciati/pdglasso.

In this paper, we apply a Threshold-Decreasing Algorithm to maximize $k$-submodular functions under a matroid constraint, which reduces the query complexity of the algorithm compared to the greedy algorithm with little loss in approximation ratio. We give a $(\frac{1}{2} - \epsilon)$-approximation algorithm for monotone $k$-submodular function maximization, and a $(\frac{1}{3} - \epsilon)$-approximation algorithm for non-monotone case, with complexity $O(\frac{n(k\cdot EO + IO)}{\epsilon} \log \frac{r}{\epsilon})$, where $r$ denotes the rank of the matroid, and $IO, EO$ denote the number of oracles to evaluate whether a subset is an independent set and to compute the function value of $f$, respectively. Since the constraint of total size can be looked as a special matroid, called uniform matroid, then we present the fast algorithm for maximizing $k$-submodular functions subject to a total size constraint as corollaries. corollaries.

We propose theoretical analyses of a modified natural gradient descent method in the neural network function space based on the eigendecompositions of neural tangent kernel and Fisher information matrix. We firstly present analytical expression for the function learned by this modified natural gradient under the assumptions of Gaussian distribution and infinite width limit. Thus, we explicitly derive the generalization error of the learned neural network function using theoretical methods from eigendecomposition and statistics theory. By decomposing of the total generalization error attributed to different eigenspace of the kernel in function space, we propose a criterion for balancing the errors stemming from training set and the distribution discrepancy between the training set and the true data. Through this approach, we establish that modifying the training direction of the neural network in function space leads to a reduction in the total generalization error. Furthermore, We demonstrate that this theoretical framework is capable to explain many existing results of generalization enhancing methods. These theoretical results are also illustrated by numerical examples on synthetic data.

Let $\hat\Sigma=\frac{1}{n}\sum_{i=1}^n X_i\otimes X_i$ denote the sample covariance operator of centered i.i.d. observations $X_1,\dots,X_n$ in a real separable Hilbert space, and let $\Sigma=\mathbf{E}(X_1\otimes X_1)$. The focus of this paper is to understand how well the bootstrap can approximate the distribution of the operator norm error $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$, in settings where the eigenvalues of $\Sigma$ decay as $\lambda_j(\Sigma)\asymp j^{-2\beta}$ for some fixed parameter $\beta>1/2$. Our main result shows that the bootstrap can approximate the distribution of $\sqrt n\|\hat\Sigma-\Sigma\|_{\text{op}}$ at a rate of order $n^{-\frac{\beta-1/2}{2\beta+4+\epsilon}}$ with respect to the Kolmogorov metric, for any fixed $\epsilon>0$. In particular, this shows that the bootstrap can achieve near $n^{-1/2}$ rates in the regime of large $\beta$--which substantially improves on previous near $n^{-1/6}$ rates in the same regime. In addition to obtaining faster rates, our analysis leverages a fundamentally different perspective based on coordinate-free techniques. Moreover, our result holds in greater generality, and we propose a new model that is compatible with both elliptical and Mar\v{c}enko-Pastur models in high-dimensional Euclidean spaces, which may be of independent interest.

While many real-world problems that might benefit from reinforcement learning, these problems rarely fit into the MDP mold: interacting with the environment is often expensive and specifying reward functions is challenging. Motivated by these challenges, prior work has developed data-driven approaches that learn entirely from samples from the transition dynamics and examples of high-return states. These methods typically learn a reward function from high-return states, use that reward function to label the transitions, and then apply an offline RL algorithm to these transitions. While these methods can achieve good results on many tasks, they can be complex, often requiring regularization and temporal difference updates. In this paper, we propose a method for offline, example-based control that learns an implicit model of multi-step transitions, rather than a reward function. We show that this implicit model can represent the Q-values for the example-based control problem. Across a range of state-based and image-based offline control tasks, our method outperforms baselines that use learned reward functions; additional experiments demonstrate improved robustness and scaling with dataset size.

The aim of this paper is to develop estimation and inference methods for the drift parameters of multivariate L\'evy-driven continuous-time autoregressive processes of order $p\in\mathbb{N}$. Starting from a continuous-time observation of the process, we develop consistent and asymptotically normal maximum likelihood estimators. We then relax the unrealistic assumption of continuous-time observation by considering natural discretizations based on a combination of Riemann-sum, finite difference, and thresholding approximations. The resulting estimators are also proven to be consistent and asymptotically normal under a general set of conditions, allowing for both finite and infinite jump activity in the driving L\'evy process. When discretizing the estimators, allowing for irregularly spaced observations is of great practical importance. In this respect, CAR($p$) models are not just relevant for "true" continuous-time processes: a CAR($p$) specification provides a natural continuous-time interpolation for modeling irregularly spaced data - even if the observed process is inherently discrete. As a practically relevant application, we consider the setting where the multivariate observation is known to possess a graphical structure. We refer to such a process as GrCAR and discuss the corresponding drift estimators and their properties. The finite sample behavior of all theoretical asymptotic results is empirically assessed by extensive simulation experiments.

In this study, we propose an improvement to the direct mating method, a constraint handling approach for multi-objective evolutionary algorithms, by hybridizing it with local mating. Local mating selects another parent from the feasible solution space around the initially selected parent. The direct mating method selects the other parent along the optimal direction in the objective space after the first parent is selected, even if it is infeasible. It shows better exploration performance for constraint optimization problems with coupling NSGA-II, but requires several individuals along the optimal direction. Due to the lack of better solutions dominated by the optimal direction from the first parent, direct mating becomes difficult as the generation proceeds. To address this issue, we propose a hybrid method that uses local mating to select another parent from the neighborhood of the first selected parent, maintaining diversity around good solutions and helping the direct mating process. We evaluate the proposed method on three mathematical problems with unique Pareto fronts and two real-world applications. We use the generation histories of the averages and standard deviations of the hypervolumes as the performance evaluation criteria. Our investigation results show that the proposed method can solve constraint multi-objective problems better than existing methods while maintaining high diversity.

北京阿比特科技有限公司