亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The package fnets for the R language implements the suite of methodologies proposed by Barigozzi et al. (2022) for the network estimation and forecasting of high-dimensional time series under a factor-adjusted vector autoregressive model, which permits strong spatial and temporal correlations in the data. Additionally, we provide tools for visualising the networks underlying the time series data after adjusting for the presence of factors. The package also offers data-driven methods for selecting tuning parameters including the number of factors, vector autoregressive order and thresholds for estimating the edge sets of the networks of interest in time series analysis. We demonstrate various features of fnets on simulated datasets as well as real data on electricity prices.

相關內容

A non-intrusive model order reduction (MOR) method that combines features of the dynamic mode decomposition (DMD) and the radial basis function (RBF) network is proposed to predict the dynamics of parametric nonlinear systems. In many applications, we have limited access to the information of the whole system, which motivates non-intrusive model reduction. One bottleneck is capturing the dynamics of the solution without knowing the physics inside the "black-box" system. DMD is a powerful tool to mimic the dynamics of the system and give a reliable approximation of the solution in the time domain using only the dominant DMD modes. However, DMD cannot reproduce the parametric behavior of the dynamics. Our contribution focuses on extending DMD to parametric DMD by RBF interpolation. Specifically, a RBF network is first trained using snapshot matrices at limited parameter samples. The snapshot matrix at any new parameter sample can be quickly learned from the RBF network. DMD will use the newly generated snapshot matrix at the online stage to predict the time patterns of the dynamics corresponding to the new parameter sample. The proposed framework and algorithm are tested and validated by numerical examples including models with parametrized and time-varying inputs.

Many real-world optimization problems involve uncertain parameters with probability distributions that can be estimated using contextual feature information. In contrast to the standard approach of first estimating the distribution of uncertain parameters and then optimizing the objective based on the estimation, we propose an integrated conditional estimation-optimization (ICEO) framework that estimates the underlying conditional distribution of the random parameter while considering the structure of the optimization problem. We directly model the relationship between the conditional distribution of the random parameter and the contextual features, and then estimate the probabilistic model with an objective that aligns with the downstream optimization problem. We show that our ICEO approach is asymptotically consistent under moderate regularity conditions and further provide finite performance guarantees in the form of generalization bounds. Computationally, performing estimation with the ICEO approach is a non-convex and often non-differentiable optimization problem. We propose a general methodology for approximating the potentially non-differentiable mapping from estimated conditional distribution to the optimal decision by a differentiable function, which greatly improves the performance of gradient-based algorithms applied to the non-convex problem. We also provide a polynomial optimization solution approach in the semi-algebraic case. Numerical experiments are also conducted to show the empirical success of our approach in different situations including with limited data samples and model mismatches.

In recent years, there has been a growing interest in understanding complex microstructures and their effect on macroscopic properties. In general, it is difficult to derive an effective constitutive law for such microstructures with reasonable accuracy and meaningful parameters. One numerical approach to bridge the scales is computational homogenization, in which a microscopic problem is solved at every macroscopic point, essentially replacing the effective constitutive model. Such approaches are, however, computationally expensive and typically infeasible in multi-query contexts such as optimization and material design. To render these analyses tractable, surrogate models that can accurately approximate and accelerate the microscopic problem over a large design space of shapes, material and loading parameters are required. In previous works, such models were constructed in a data-driven manner using methods such as Neural Networks (NN) or Gaussian Process Regression (GPR). However, these approaches currently suffer from issues, such as need for large amounts of training data, lack of physics, and considerable extrapolation errors. In this work, we develop a reduced order model based on Proper Orthogonal Decomposition (POD), Empirical Cubature Method (ECM) and a geometrical transformation method with the following key features: (i) large shape variations of the microstructure are captured, (ii) only relatively small amounts of training data are necessary, and (iii) highly non-linear history-dependent behaviors are treated. The proposed framework is tested and examined in two numerical examples, involving two scales and large geometrical variations. In both cases, high speed-ups and accuracies are achieved while observing good extrapolation behavior.

The future networks pose intense demands for intelligent and customized designs to cope with the surging network scale, dynamically time-varying environments, diverse user requirements, and complicated manual configuration. However, traditional rule-based solutions heavily rely on human efforts and expertise, while data-driven intelligent algorithms still lack interpretability and generalization. In this paper, we propose the AIGN (AI-Generated Network), a novel intention-driven paradigm for network design, which allows operators to quickly generate a variety of customized network solutions and achieve expert-free problem optimization. Driven by the diffusion model-based learning approach, AIGN has great potential to learn the reward-maximizing trajectories, automatically satisfy multiple constraints, adapt to different objectives and scenarios, or even intelligently create novel designs and mechanisms unseen in existing network environments. Finally, we conduct a use case to demonstrate that AIGN can effectively guide the design of transmit power allocation in digital twin-based access networks.

2D forward-looking sonar is a crucial sensor for underwater robotic perception. A well-known problem in this field is estimating missing information in the elevation direction during sonar imaging. There are demands to estimate 3D information per image for 3D mapping and robot navigation during fly-through missions. Recent learning-based methods have demonstrated their strengths, but there are still drawbacks. Supervised learning methods have achieved high-quality results but may require further efforts to acquire 3D ground-truth labels. The existing self-supervised method requires pretraining using synthetic images with 3D supervision. This study aims to realize stable self-supervised learning of elevation angle estimation without pretraining using synthetic images. Failures during self-supervised learning may be caused by motion degeneracy problems. We first analyze the motion field of 2D forward-looking sonar, which is related to the main supervision signal. We utilize a modern learning framework and prove that if the training dataset is built with effective motions, the network can be trained in a self-supervised manner without the knowledge of synthetic data. Both simulation and real experiments validate the proposed method.

This work introduces a novel framework for dynamic factor model-based data integration of multiple subjects, called GRoup Integrative DYnamic factor models (GRIDY). The framework facilitates the determination of inter-subject differences between two pre-labeled groups by considering a combination of group spatial information and individual temporal dependence. Furthermore, it enables the identification of intra-subject differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a non-iterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the framework is evaluated through simulations conducted under various scenarios and the analysis of resting-state functional MRI data collected from multiple subjects in both the Autism Spectrum Disorder group and the control group.

Accurate load forecasting plays a vital role in numerous sectors, but accurately capturing the complex dynamics of dynamic power systems remains a challenge for traditional statistical models. For these reasons, time-series models (ARIMA) and deep-learning models (ANN, LSTM, GRU, etc.) are commonly deployed and often experience higher success. In this paper, we analyze the efficacy of the recently developed Transformer-based Neural Network model in Load forecasting. Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism. We apply several metaheuristics namely Differential Evolution to find the optimal hyperparameters of the Transformer-based Neural Network to produce accurate forecasts. Differential Evolution provides scalable, robust, global solutions to non-differentiable, multi-objective, or constrained optimization problems. Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Our findings demonstrate the potential of metaheuristic-enhanced Transformer-based Neural Network models in Load forecasting accuracy and provide optimal hyperparameters for each model.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司