亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Causal inference methods based on electronic health record (EHR) databases must simultaneously handle confounding and missing data. Vast scholarship exists aimed at addressing these two issues separately, but surprisingly few papers attempt to address them simultaneously. In practice, when faced with simultaneous missing data and confounding, analysts may proceed by first imputing missing data and subsequently using outcome regression or inverse-probability weighting (IPW) to address confounding. However, little is known about the theoretical performance of such $\textit{ad hoc}$ methods. In a recent paper Levis $\textit{et al.}$ outline a robust framework for tackling these problems together under certain identifying conditions, and introduce a pair of estimators for the average treatment effect (ATE), one of which is non-parametric efficient. In this work we present a series of simulations, motivated by a published EHR based study of the long-term effects of bariatric surgery on weight outcomes, to investigate these new estimators and compare them to existing $\textit{ad hoc}$ methods. While the latter perform well in certain scenarios, no single estimator is uniformly best. As such, the work of Levis $\textit{et al.}$ may serve as a reasonable default for causal inference when handling confounding and missing data together.

相關內容

Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.

This article presents a neural network approach for estimating the covariance function of spatial Gaussian random fields defined in a portion of the Euclidean plane. Our proposal builds upon recent contributions, expanding from the purely isotropic setting to encompass geometrically anisotropic correlation structures, i.e., random fields with correlation ranges that vary across different directions. We conduct experiments with both simulated and real data to assess the performance of the methodology and to provide guidelines to practitioners.

The inherent diversity of computation types within the deep neural network (DNN) models often requires a variety of specialized units in hardware processors, which limits computational efficiency, increasing both inference latency and power consumption, especially when the hardware processor needs to support and execute different neural networks. In this study, we introduce NeuralMatrix, which elastically transforms the computations of entire DNNs into linear matrix operations. This transformation allows seamless execution of various DNN models all with matrix operations and paves the way for running versatile DNN models with a single General Matrix Multiplication (GEMM) accelerator.Extensive experiments with both CNN and transformer-based models demonstrate the potential of NeuralMatrix to accurately and efficiently execute a wide range of DNN models, achieving 2.17-38.72 times computation efficiency (i.e., throughput per power) compared to CPUs, GPUs, and SoC platforms. This level of efficiency is usually only attainable with the accelerator designed for a specific neural network.

End-to-end training with global optimization have popularized graph neural networks (GNNs) for node classification, yet inadvertently introduced vulnerabilities to adversarial edge-perturbing attacks. Adversaries can exploit the inherent opened interfaces of GNNs' input and output, perturbing critical edges and thus manipulating the classification results. Current defenses, due to their persistent utilization of global-optimization-based end-to-end training schemes, inherently encapsulate the vulnerabilities of GNNs. This is specifically evidenced in their inability to defend against targeted secondary attacks. In this paper, we propose the Graph Agent Network (GAgN) to address the aforementioned vulnerabilities of GNNs. GAgN is a graph-structured agent network in which each node is designed as an 1-hop-view agent. Through the decentralized interactions between agents, they can learn to infer global perceptions to perform tasks including inferring embeddings, degrees and neighbor relationships for given nodes. This empowers nodes to filtering adversarial edges while carrying out classification tasks. Furthermore, agents' limited view prevents malicious messages from propagating globally in GAgN, thereby resisting global-optimization-based secondary attacks. We prove that single-hidden-layer multilayer perceptrons (MLPs) are theoretically sufficient to achieve these functionalities. Experimental results show that GAgN effectively implements all its intended capabilities and, compared to state-of-the-art defenses, achieves optimal classification accuracy on the perturbed datasets.

We implement and analyse a sparse / indirect-addressing data structure for the Lattice Boltzmann Method to support efficient compute kernels for fluid dynamics problems with a high number of non-fluid nodes in the domain, such as in porous media flows. The data structure is integrated into a code generation pipeline to enable sparse Lattice Boltzmann Methods with a variety of stencils and collision operators and to generate efficient code for kernels for CPU as well as for AMD and NVIDIA accelerator cards. We optimize these sparse kernels with an in-place streaming pattern to save memory accesses and memory consumption and we implement a communication hiding technique to prove scalability. We present single GPU performance results with up to 99% of maximal bandwidth utilization. We integrate the optimized generated kernels in the high performance framework WALBERLA and achieve a scaling efficiency of at least 82% on up to 1024 NVIDIA A100 GPUs and up to 4096 AMD MI250X GPUs on modern HPC systems. Further, we set up three different applications to test the sparse data structure for realistic demonstrator problems. We show performance results for flow through porous media, free flow over a particle bed, and blood flow in a coronary artery. We achieve a maximal performance speed-up of 2 and a significantly reduced memory consumption by up to 75% with the sparse / indirect-addressing data structure compared to the direct-addressing data structure for these applications.

End-to-end training with global optimization have popularized graph neural networks (GNNs) for node classification, yet inadvertently introduced vulnerabilities to adversarial edge-perturbing attacks. Adversaries can exploit the inherent opened interfaces of GNNs' input and output, perturbing critical edges and thus manipulating the classification results. Current defenses, due to their persistent utilization of global-optimization-based end-to-end training schemes, inherently encapsulate the vulnerabilities of GNNs. This is specifically evidenced in their inability to defend against targeted secondary attacks. In this paper, we propose the Graph Agent Network (GAgN) to address the aforementioned vulnerabilities of GNNs. GAgN is a graph-structured agent network in which each node is designed as an 1-hop-view agent. Through the decentralized interactions between agents, they can learn to infer global perceptions to perform tasks including inferring embeddings, degrees and neighbor relationships for given nodes. This empowers nodes to filtering adversarial edges while carrying out classification tasks. Furthermore, agents' limited view prevents malicious messages from propagating globally in GAgN, thereby resisting global-optimization-based secondary attacks. We prove that single-hidden-layer multilayer perceptrons (MLPs) are theoretically sufficient to achieve these functionalities. Experimental results show that GAgN effectively implements all its intended capabilities and, compared to state-of-the-art defenses, achieves optimal classification accuracy on the perturbed datasets.

We show that deep reinforcement learning algorithms can retain their ability to learn without resetting network parameters in settings where the number of gradient updates greatly exceeds the number of environment samples by combatting value function divergence. Under large update-to-data ratios, a recent study by Nikishin et al. (2022) suggested the emergence of a primacy bias, in which agents overfit early interactions and downplay later experience, impairing their ability to learn. In this work, we investigate the phenomena leading to the primacy bias. We inspect the early stages of training that were conjectured to cause the failure to learn and find that one fundamental challenge is a long-standing acquaintance: value function divergence. Overinflated Q-values are found not only on out-of-distribution but also in-distribution data and can be linked to overestimation on unseen action prediction propelled by optimizer momentum. We employ a simple unit-ball normalization that enables learning under large update ratios, show its efficacy on the widely used dm_control suite, and obtain strong performance on the challenging dog tasks, competitive with model-based approaches. Our results question, in parts, the prior explanation for sub-optimal learning due to overfitting early data.

Recently, graph-based and Transformer-based deep learning networks have demonstrated excellent performances on various point cloud tasks. Most of the existing graph methods are based on static graph, which take a fixed input to establish graph relations. Moreover, many graph methods apply maximization and averaging to aggregate neighboring features, so that only a single neighboring point affects the feature of centroid or different neighboring points have the same influence on the centroid's feature, which ignoring the correlation and difference between points. Most Transformer-based methods extract point cloud features based on global attention and lack the feature learning on local neighbors. To solve the problems of these two types of models, we propose a new feature extraction block named Graph Transformer and construct a 3D point point cloud learning network called GTNet to learn features of point clouds on local and global patterns. Graph Transformer integrates the advantages of graph-based and Transformer-based methods, and consists of Local Transformer and Global Transformer modules. Local Transformer uses a dynamic graph to calculate all neighboring point weights by intra-domain cross-attention with dynamically updated graph relations, so that every neighboring point could affect the features of centroid with different weights; Global Transformer enlarges the receptive field of Local Transformer by a global self-attention. In addition, to avoid the disappearance of the gradient caused by the increasing depth of network, we conduct residual connection for centroid features in GTNet; we also adopt the features of centroid and neighbors to generate the local geometric descriptors in Local Transformer to strengthen the local information learning capability of the model. Finally, we use GTNet for shape classification, part segmentation and semantic segmentation tasks in this paper.

The remarkable success of Large Language Models (LLMs) across diverse tasks has driven the research community to extend their capabilities to molecular applications. However, most molecular LLMs employ adapter-based architectures that do not treat molecule and text modalities equally and lack a supervision signal for the molecule modality. To address these issues, we introduce UniMoT, a Unified Molecule-Text LLM adopting a tokenizer-based architecture that expands the vocabulary of LLM with molecule tokens. Specifically, we introduce a Vector Quantization-driven tokenizer that incorporates a Q-Former to bridge the modality gap between molecule and text. This tokenizer transforms molecules into sequences of molecule tokens with causal dependency, encapsulating high-level molecular and textual information. Equipped with this tokenizer, UniMoT can unify molecule and text modalities under a shared token representation and an autoregressive training paradigm, enabling it to interpret molecules as a foreign language and generate them as text. Following a four-stage training scheme, UniMoT emerges as a multi-modal generalist capable of performing both molecule-to-text and text-to-molecule tasks. Extensive experiments demonstrate that UniMoT achieves state-of-the-art performance across a wide range of molecule comprehension and generation tasks.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

北京阿比特科技有限公司