亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional quantile estimators that are based on one or two order statistics are a common way to estimate distribution quantiles based on the given samples. These estimators are robust, but their statistical efficiency is not always good enough. A more efficient alternative is the Harrell-Davis quantile estimator which uses a weighted sum of all order statistics. Whereas this approach provides more accurate estimations for the light-tailed distributions, it's not robust. To be able to customize the trade-off between statistical efficiency and robustness, we could consider a trimmed modification of the Harrell-Davis quantile estimator. In this approach, we discard order statistics with low weights according to the highest density interval of the beta distribution.

相關內容

Given a dataset of input states, measurements, and probabilities, is it possible to efficiently predict the measurement probabilities associated with a quantum circuit? Recent work of Caro and Datta (2020) studied the problem of PAC learning quantum circuits in an information theoretic sense, leaving open questions of computational efficiency. In particular, one candidate class of circuits for which an efficient learner might have been possible was that of Clifford circuits, since the corresponding set of states generated by such circuits, called stabilizer states, are known to be efficiently PAC learnable (Rocchetto 2018). Here we provide a negative result, showing that proper learning of CNOT circuits is hard for classical learners unless $\textsf{RP} = \textsf{NP}$. As the classical analogue and subset of Clifford circuits, this naturally leads to a hardness result for Clifford circuits as well. Additionally, we show that if $\textsf{RP} = \textsf{NP}$ then there would exist efficient proper learning algorithms for CNOT and Clifford circuits. By similar arguments, we also find that an efficient proper quantum learner for such circuits exists if and only if $\textsf{NP} \subseteq \textsf{RQP}$.

Truncated densities are probability density functions defined on truncated domains. They share the same parametric form with their non-truncated counterparts up to a normalizing constant. Since the computation of their normalizing constants is usually infeasible, Maximum Likelihood Estimation cannot be easily applied to estimate truncated density models. Score Matching (SM) is a powerful tool for fitting parameters using only unnormalized models. However, it cannot be directly applied here as boundary conditions used to derive a tractable SM objective are not satisfied by truncated densities. In this paper, we study parameter estimation for truncated probability densities using SM. The estimator minimizes a weighted Fisher divergence. The weight function is simply the shortest distance from a data point to the boundary of the domain. We show this choice of weight function naturally arises from minimizing the Stein discrepancy as well as upperbounding the finite-sample estimation error. The usefulness of our method is demonstrated by numerical experiments and a study on the Chicago crime data set. We also show that the proposed density estimation can correct the outlier-trimming bias caused by aggressive outlier detection methods.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

An important challenge in statistical analysis lies in controlling the estimation bias when handling the ever-increasing data size and model complexity. For example, approximate methods are increasingly used to address the analytical and/or computational challenges when implementing standard estimators, but they often lead to inconsistent estimators. So consistent estimators can be difficult to obtain, especially for complex models and/or in settings where the number of parameters diverges with the sample size. We propose a general simulation-based estimation framework that allows to construct consistent and bias corrected estimators for parameters of increasing dimensions. The key advantage of the proposed framework is that it only requires to compute a simple inconsistent estimator multiple times. The resulting Just Identified iNdirect Inference estimator (JINI) enjoys nice properties, including consistency, asymptotic normality, and finite sample bias correction better than alternative methods. We further provide a simple algorithm to construct the JINI in a computationally efficient manner. Therefore, the JINI is especially useful in settings where standard methods may be challenging to apply, for example, in the presence of misclassification and rounding. We consider comprehensive simulation studies and analyze an alcohol consumption data example to illustrate the excellent performance and usefulness of the method.

Let $X^{(n)}$ be an observation sampled from a distribution $P_{\theta}^{(n)}$ with an unknown parameter $\theta,$ $\theta$ being a vector in a Banach space $E$ (most often, a high-dimensional space of dimension $d$). We study the problem of estimation of $f(\theta)$ for a functional $f:E\mapsto {\mathbb R}$ of some smoothness $s>0$ based on an observation $X^{(n)}\sim P_{\theta}^{(n)}.$ Assuming that there exists an estimator $\hat \theta_n=\hat \theta_n(X^{(n)})$ of parameter $\theta$ such that $\sqrt{n}(\hat \theta_n-\theta)$ is sufficiently close in distribution to a mean zero Gaussian random vector in $E,$ we construct a functional $g:E\mapsto {\mathbb R}$ such that $g(\hat \theta_n)$ is an asymptotically normal estimator of $f(\theta)$ with $\sqrt{n}$ rate provided that $s>\frac{1}{1-\alpha}$ and $d\leq n^{\alpha}$ for some $\alpha\in (0,1).$ We also derive general upper bounds on Orlicz norm error rates for estimator $g(\hat \theta)$ depending on smoothness $s,$ dimension $d,$ sample size $n$ and the accuracy of normal approximation of $\sqrt{n}(\hat \theta_n-\theta).$ In particular, this approach yields asymptotically efficient estimators in some high-dimensional exponential models.

In randomized experiments, the actual treatments received by some experimental units may differ from their treatment assignments. This non-compliance issue often occurs in clinical trials, social experiments, and the applications of randomized experiments in many other fields. Under certain assumptions, the average treatment effect for the compliers is identifiable and equal to the ratio of the intention-to-treat effects of the potential outcomes to that of the potential treatment received. To improve the estimation efficiency, we propose three model-assisted estimators for the complier average treatment effect in randomized experiments with a binary outcome. We study their asymptotic properties, compare their efficiencies with that of the Wald estimator, and propose the Neyman-type conservative variance estimators to facilitate valid inferences. Moreover, we extend our methods and theory to estimate the multiplicative complier average treatment effect. Our analysis is randomization-based, allowing the working models to be misspecified. Finally, we conduct simulation studies to illustrate the advantages of the model-assisted methods and apply these analysis methods in a randomized experiment to evaluate the effect of academic services or incentives on academic performance.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.

Learning accurate classifiers for novel categories from very few examples, known as few-shot image classification, is a challenging task in statistical machine learning and computer vision. The performance in few-shot classification suffers from the bias in the estimation of classifier parameters; however, an effective underlying bias reduction technique that could alleviate this issue in training few-shot classifiers has been overlooked. In this work, we demonstrate the effectiveness of Firth bias reduction in few-shot classification. Theoretically, Firth bias reduction removes the $O(N^{-1})$ first order term from the small-sample bias of the Maximum Likelihood Estimator. Here we show that the general Firth bias reduction technique simplifies to encouraging uniform class assignment probabilities for multinomial logistic classification, and almost has the same effect in cosine classifiers. We derive an easy-to-implement optimization objective for Firth penalized multinomial logistic and cosine classifiers, which is equivalent to penalizing the cross-entropy loss with a KL-divergence between the uniform label distribution and the predictions. Then, we empirically evaluate that it is consistently effective across the board for few-shot image classification, regardless of (1) the feature representations from different backbones, (2) the number of samples per class, and (3) the number of classes. Finally, we show the robustness of Firth bias reduction, in the case of imbalanced data distribution. Our implementation is available at //github.com/ehsansaleh/firth_bias_reduction

We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.

北京阿比特科技有限公司