亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Numerous communications and networking challenges prevent deploying unmanned aerial vehicles (UAVs) in extreme environments where the existing wireless technologies are mainly ground-focused; and, as a consequence, the air-to-air channel for UAVs is not fully covered. In this paper, a novel spatial estimation for beamforming is proposed to address UAV-based joint sensing and communications (JSC). The proposed spatial estimation algorithm relies on using a delay tolerant observer-based predictor, which can accurately predict the positions of the target UAVs in the presence of uncertainties due to factors such as wind gust. The solution, which uses discrete-time unknown input observers (UIOs), reduces the joint target detection and communication complication notably by operating on the same device and performs reliably in the presence of channel blockage and interference. The effectiveness of the proposed approach is demonstrated using simulation results.

相關內容

The multi-antenna coded caching problem, where the server having $L$ transmit antennas communicating to $K$ users through a wireless broadcast link, is addressed. In the problem setting, the server has a library of $N$ files, and each user is equipped with a dedicated cache of capacity $M$. The idea of extended placement delivery array (EPDA), an array which consists of a special symbol $\star$ and integers in a set $\{1,2,\dots,S\}$, is proposed to obtain a novel solution for the aforementioned multi-antenna coded caching problem. From a $(K,L,F,Z,S)$ EPDA, a multi-antenna coded caching scheme with $K$ users, and the server with $L$ transmit antennas, can be obtained in which the normalized memory $\frac{M}{N}=\frac{Z}{F}$, and the delivery time $T=\frac{S}{F}$. The placement delivery array (for single-antenna coded caching scheme) is a special class of EPDAs with $L=1$. For the multi-antenna coded caching schemes constructed from EPDAs, it is shown that the maximum possible Degree of Freedom (DoF) that can be achieved is $t+L$, where $t=\frac{KM}{N}$ is an integer. Furthermore, two constructions of EPDAs are proposed: a) $ K=t+L$, and b) $K=nt+(n-1)L, \hspace{0.1cm}L\geq t$, where $n\geq 2$ is an integer. In the resulting multi-antenna schemes from those EPDAs achieve the full DoF, while requiring a subpacketization number $\frac{K}{\text{gcd}(K,t,L)}$. This subpacketization number is less than that required by previously known schemes in the literature.

Computation offloading is indispensable for mobile edge computing (MEC). It uses edge resources to enable intensive computations and save energy for resource-constrained devices. Existing works generally impose strong assumptions on radio channels and network queue sizes. However, practical MEC systems are subject to various uncertainties rendering these assumptions impractical. In this paper, we investigate the energy-efficient computation offloading problem by relaxing those common assumptions and considering intrinsic uncertainties in the network. Specifically, we minimize the worst-case expected energy consumption of a local device when executing a time-critical application modeled as a directed acyclic graph. We employ the extreme value theory to bound the occurrence probability of uncertain events. To solve the formulated problem, we develop an $\epsilon$-bounded approximation algorithm based on column generation. The proposed algorithm can efficiently identify a feasible solution that is less than (1+$\epsilon$) of the optimal one. We implement the proposed scheme on an Android smartphone and conduct extensive experiments using a real-world application. Experiment results corroborate that it will lead to lower energy consumption for the client device by considering the intrinsic uncertainties during computation offloading. The proposed computation offloading scheme also significantly outperforms other schemes in terms of energy saving.

Millimeter-wave self-backhauled small cells are a key component of next-generation wireless networks. Their dense deployment will increase data rates, reduce latency, and enable efficient data transport between the access and backhaul networks, providing greater flexibility not previously possible with optical fiber. Despite their high potential, operating dense self-backhauled networks optimally is an open challenge, particularly for radio resource management (RRM). This paper presents, RadiOrchestra, a holistic RRM framework that models and optimizes beamforming, rate selection as well as user association and admission control for self-backhauled networks. The framework is designed to account for practical challenges such as hardware limitations of base stations (e.g., computational capacity, discrete rates), the need for adaptability of backhaul links, and the presence of interference. Our framework is formulated as a nonconvex mixed-integer nonlinear program, which is challenging to solve. To approach this problem, we propose three algorithms that provide a trade-off between complexity and optimality. Furthermore, we derive upper and lower bounds to characterize the performance limits of the system. We evaluate the developed strategies in various scenarios, showing the feasibility of deploying practical self-backhauling in future networks.

The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless multiple input and multiple output (MIMO) systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an unconstrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in capacity. We are testing the proposed approach in several scenarios generated using Quadriga~-- open-source software for generating realistic radio channel impulse response. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches. The proposed method has a simple implementation and can be a good reference for other heuristic algorithms in this field.

The sixth generation (6G) mobile communication networks are expected to offer a new paradigm of cellular integrated sensing and communication (ISAC). However, due to the intrinsic difference between sensing and communication in terms of coverage requirement, current cellular networks that are deliberately planned mainly for communication coverage are difficult to achieve seamless sensing coverage. To address this issue, this paper studies the beamforming optimization towards seamless sensing coverage for a basic bi-static ISAC system, while ensuring that the communication requirements of multiple users equipment (UEs) are satisfied. Towards this end, an optimization problem is formulated to maximize the worst-case sensing signal-to-noise ratio (SNR) in a prescribed coverage region, subject to the signal-to-interference-plus-noise ratio (SINR) requirement for each UE. To gain some insights, we first investigate the special case with one single UE and one single sensing point, for which a closed-from expression of the optimal beamforming is obtained. For the general case with multiple communication UEs and contiguous regional sensing coverage, an efficient algorithm based on successive convex approximation (SCA) is proposed to solve the non-convex beamforming optimization problem. Numerical results demonstrate that the proposed design is able to achieve seamless sensing coverage in the prescribed region, while guaranteeing the communication requirements of the UEs.

We propose throughput and cost optimal job scheduling algorithms in cloud computing platforms offering Infrastructure as a Service. We first consider online migration and propose job scheduling algorithms to minimize job migration and server running costs. We consider algorithms that assume knowledge of job-size on arrival of jobs. We characterize the optimal cost subject to system stability. We develop a drift-plus-penalty framework based algorithm that can achieve optimal cost arbitrarily closely. Specifically this algorithm yields a trade-off between delay and costs. We then relax the job-size knowledge assumption and give an algorithm that uses readily offered service to the jobs. We show that this algorithm gives order-wise identical cost as the job size based algorithm. Later, we consider offline job migration that incurs migration delays. We again present throughput optimal algorithms that minimize server running cost. We illustrate the performance of the proposed algorithms and compare these to the existing algorithms via simulation.

Unmanned aerial vehicle (UAV) swarm enabled edge computing is envisioned to be promising in the sixth generation wireless communication networks due to their wide application sensories and flexible deployment. However, most of the existing works focus on edge computing enabled by a single or a small scale UAVs, which are very different from UAV swarm-enabled edge computing. In order to facilitate the practical applications of UAV swarm-enabled edge computing, the state of the art research is presented in this article. The potential applications, architectures and implementation considerations are illustrated. Moreover, the promising enabling technologies for UAV swarm-enabled edge computing are discussed. Furthermore, we outline challenges and open issues in order to shed light on the future research directions.

The ever-growing interest witnessed in the acquisition and development of unmanned aerial vehicles (UAVs), commonly known as drones in the past few years, has brought generation of a very promising and effective technology. Because of their characteristic of small size and fast deployment, UAVs have shown their effectiveness in collecting data over unreachable areas and restricted coverage zones. Moreover, their flexible-defined capacity enables them to collect information with a very high level of detail, leading to high resolution images. UAVs mainly served in military scenario. However, in the last decade, they have being broadly adopted in civilian applications as well. The task of aerial surveillance and situation awareness is usually completed by integrating intelligence, surveillance, observation, and navigation systems, all interacting in the same operational framework. To build this capability, UAV's are well suited tools that can be equipped with a wide variety of sensors, such as cameras or radars. Deep learning has been widely recognized as a prominent approach in different computer vision applications. Specifically, one-stage object detector and two-stage object detector are regarded as the most important two groups of Convolutional Neural Network based object detection methods. One-stage object detector could usually outperform two-stage object detector in speed; however, it normally trails in detection accuracy, compared with two-stage object detectors. In this study, focal loss based RetinaNet, which works as one-stage object detector, is utilized to be able to well match the speed of regular one-stage detectors and also defeat two-stage detectors in accuracy, for UAV based object detection. State-of-the-art performance result has been showed on the UAV captured image dataset-Stanford Drone Dataset (SDD).

We propose an algorithm for real-time 6DOF pose tracking of rigid 3D objects using a monocular RGB camera. The key idea is to derive a region-based cost function using temporally consistent local color histograms. While such region-based cost functions are commonly optimized using first-order gradient descent techniques, we systematically derive a Gauss-Newton optimization scheme which gives rise to drastically faster convergence and highly accurate and robust tracking performance. We furthermore propose a novel complex dataset dedicated for the task of monocular object pose tracking and make it publicly available to the community. To our knowledge, It is the first to address the common and important scenario in which both the camera as well as the objects are moving simultaneously in cluttered scenes. In numerous experiments - including our own proposed data set - we demonstrate that the proposed Gauss-Newton approach outperforms existing approaches, in particular in the presence of cluttered backgrounds, heterogeneous objects and partial occlusions.

In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.

北京阿比特科技有限公司