亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In an instrumental variable model, the score statistic can be bounded for any alternative in parts of the parameter space. These regions involve a constraint on the first-stage regression coefficients and the reduced-form covariance matrix. Consequently, the Lagrange Multiplier test can have power close to size, despite being efficient under standard asymptotics. This information loss limits the power of conditional tests which use only the Anderson-Rubin and the score statistic. The conditional quasi-likelihood ratio test also suffers severe losses because it can be bounded for any alternative. A necessary condition for drastic power loss to occur is that the Hermitian of the reduced-form covariance matrix has eigenvalues of opposite signs. These cases are denoted impossibility designs (ID). We show this happens in practice, by applying our theory to the problem of inference on the intertemporal elasticity of substitution (IES). Of eleven countries studied by Yogo (2004} and Andrews (2016), nine are consistent with ID at the 95\% level.

相關內容

在(zai)概率論和統計(ji)學(xue)中,協(xie)方(fang)(fang)(fang)(fang)差(cha)矩陣(zhen)(也稱為自協(xie)方(fang)(fang)(fang)(fang)差(cha)矩陣(zhen),色散矩陣(zhen),方(fang)(fang)(fang)(fang)差(cha)矩陣(zhen)或方(fang)(fang)(fang)(fang)差(cha)-協(xie)方(fang)(fang)(fang)(fang)差(cha)矩陣(zhen))是平方(fang)(fang)(fang)(fang)矩陣(zhen),給出了給定隨機向(xiang)量的每對(dui)元素(su)之間的協(xie)方(fang)(fang)(fang)(fang)差(cha)。 在(zai)矩陣(zhen)對(dui)角線中存在(zai)方(fang)(fang)(fang)(fang)差(cha),即每個元素(su)與其自身(shen)的協(xie)方(fang)(fang)(fang)(fang)差(cha)。

We consider a statistical inverse learning problem, where the task is to estimate a function $f$ based on noisy point evaluations of $Af$, where $A$ is a linear operator. The function $Af$ is evaluated at i.i.d. random design points $u_n$, $n=1,...,N$ generated by an unknown general probability distribution. We consider Tikhonov regularization with general convex and $p$-homogeneous penalty functionals and derive concentration rates of the regularized solution to the ground truth measured in the symmetric Bregman distance induced by the penalty functional. We derive concrete rates for Besov norm penalties and numerically demonstrate the correspondence with the observed rates in the context of X-ray tomography.

We demonstrate a method for localizing where two smooths differ using a true discovery proportion (TDP) based interpretation. The procedure yields a statement on the proportion of some region where true differences exist between two smooths, which results from use of hypothesis tests on collections of basis coefficients parametrizing the smooths. The methodology avoids otherwise ad hoc means of doing so such as performing hypothesis tests on entire smooths of subsetted data. TDP estimates are 1-alpha confidence bounded simultaneously, assuring that the estimate for a region is a lower bound on the proportion of actual difference, or true discoveries, in that region with high confidence regardless of the number, location, or size of regions for which TDP is estimated. Our procedure is based on closed-testing using Simes local test. We develop expressions for the covariance of quadratic forms because of the multiple regression framework in which we use closed-testing results, which are shown to be non-negative in many settings. Our procedure is well-powered because of a result on the off-diagonal decay structure of the covariance matrix of penalized B-splines of degree two or less. We demonstrate achievement of estimated TDP in simulation for different specified alpha levels and degree of difference and analyze a data set of walking gait of cerebral palsy patients. Keywords: splines; smoothing; multiple testing; closed-testing; simultaneous confidence

In real word applications, data generating process for training a machine learning model often differs from what the model encounters in the test stage. Understanding how and whether machine learning models generalize under such distributional shifts have been a theoretical challenge. Here, we study generalization in kernel regression when the training and test distributions are different using methods from statistical physics. Using the replica method, we derive an analytical formula for the out-of-distribution generalization error applicable to any kernel and real datasets. We identify an overlap matrix that quantifies the mismatch between distributions for a given kernel as a key determinant of generalization performance under distribution shift. Using our analytical expressions we elucidate various generalization phenomena including possible improvement in generalization when there is a mismatch. We develop procedures for optimizing training and test distributions for a given data budget to find best and worst case generalizations under the shift. We present applications of our theory to real and synthetic datasets and for many kernels. We compare results of our theory applied to Neural Tangent Kernel with simulations of wide networks and show agreement. We analyze linear regression in further depth.

We consider the problem of online allocation (matching, budgeted allocations, and assortments) of reusable resources where an adversarial sequence of resource requests is revealed over time and allocated resources are used/rented for a stochastic duration, drawn independently from known resource usage distributions. This problem is a fundamental generalization of well studied models in online matching and resource allocation. We give an algorithm that obtains the best possible competitive ratio of $(1-1/e)$ for general usage distributions and large resource capacities. At the heart of our algorithm is a new quantity that factors in the potential of reusability for each resource by (computationally) creating an asymmetry between identical units of the resource. In order to control the stochastic dependencies induced by reusability, we introduce a relaxed online algorithm that is only subject to fluid approximations of the stochastic elements in the problem. The output of this relaxed algorithm guides the overall algorithm. Finally, we establish competitive ratio guarantees by constructing a feasible solution to an LP free system of constraints. More generally, these ideas lead to a principled approach for integrating stochastic and combinatorial elements (such as reusability, customer choice, and budgeted allocations) in online resource allocation problems.

This paper introduces a notation of $\varepsilon$-weakened robustness for analyzing the reliability and stability of deep neural networks (DNNs). Unlike the conventional robustness, which focuses on the "perfect" safe region in the absence of adversarial examples, $\varepsilon$-weakened robustness focuses on the region where the proportion of adversarial examples is bounded by user-specified $\varepsilon$. Smaller $\varepsilon$ means a smaller chance of failure. Under such robustness definition, we can give conclusive results for the regions where conventional robustness ignores. We prove that the $\varepsilon$-weakened robustness decision problem is PP-complete and give a statistical decision algorithm with user-controllable error bound. Furthermore, we derive an algorithm to find the maximum $\varepsilon$-weakened robustness radius. The time complexity of our algorithms is polynomial in the dimension and size of the network. So, they are scalable to large real-world networks. Besides, We also show its potential application in analyzing quality issues.

Estimating causal effects from observational data informs us about which factors are important in an autonomous system, and enables us to take better decisions. This is important because it has applications in selecting a treatment in medical systems or making better strategies in industries or making better policies for our government or even the society. Unavailability of complete data, coupled with high cardinality of data, makes this estimation task computationally intractable. Recently, a regression-based weighted estimator has been introduced that is capable of producing solution using bounded samples of a given problem. However, as the data dimension increases, the solution produced by the regression-based method degrades. Against this background, we introduce a neural network based estimator that improves the solution quality in case of non-linear and finitude of samples. Finally, our empirical evaluation illustrates a significant improvement of solution quality, up to around $55\%$, compared to the state-of-the-art estimators.

We consider the problem of testing for long-range dependence for time-varying coefficient regression models. The covariates and errors are assumed to be locally stationary, which allows complex temporal dynamics and heteroscedasticity. We develop KPSS, R/S, V/S, and K/S-type statistics based on the nonparametric residuals, and propose bootstrap approaches equipped with a difference-based long-run covariance matrix estimator for practical implementation. Under the null hypothesis, the local alternatives as well as the fixed alternatives, we derive the limiting distributions of the test statistics, establish the uniform consistency of the difference-based long-run covariance estimator, and justify the bootstrap algorithms theoretically. In particular, the exact local asymptotic power of our testing procedure enjoys the order $O( \log^{-1} n)$, the same as that of the classical KPSS test for long memory in strictly stationary series without covariates. We demonstrate the effectiveness of our tests by extensive simulation studies. The proposed tests are applied to a COVID-19 dataset in favor of long-range dependence in the cumulative confirmed series of COVID-19 in several countries, and to the Hong Kong circulatory and respiratory dataset, identifying a new type of 'spurious long memory'.

Measuring quality of cancer care delivered by US health providers is challenging. Patients receiving oncology care greatly vary in disease presentation among other key characteristics. In this paper we discuss a framework for institutional quality measurement which addresses the heterogeneity of patient populations. For this, we follow recent statistical developments on health outcomes research and conceptualize the task of quality measurement as a causal inference problem, helping to target flexible covariate profiles that can represent specific populations of interest. To our knowledge, such covariate profiles have not been used in the quality measurement literature. We use different clinically relevant covariate profiles and evaluate methods for layered case-mix adjustments that combine weighting and regression modeling approaches in a sequential manner in order to reduce model extrapolation and allow for provider effect modification. We appraise these methods in an extensive simulation study and highlight the practical utility of weighting methods that warn the investigator when case-mix adjustments are infeasible without some form of extrapolation that goes beyond the support of the data. In a study of cancer-care outcomes, we assess the performance of oncology practices for different profiles that correspond to the types of patients who may receive cancer care. We describe how the methods examined may be particularly important for high-stakes quality measurement, such as public reporting or performance-based payments. These methods may also be applied to support the health care decisions of individual patients and provide a path to personalized quality measurement.

Partial observations of continuous time-series dynamics at arbitrary time stamps exist in many disciplines. Fitting this type of data using statistical models with continuous dynamics is not only promising at an intuitive level but also has practical benefits, including the ability to generate continuous trajectories and to perform inference on previously unseen time stamps. Despite exciting progress in this area, the existing models still face challenges in terms of their representational power and the quality of their variational approximations. We tackle these challenges with continuous latent process flows (CLPF), a principled architecture decoding continuous latent processes into continuous observable processes using a time-dependent normalizing flow driven by a stochastic differential equation. To optimize our model using maximum likelihood, we propose a novel piecewise construction of a variational posterior process and derive the corresponding variational lower bound using trajectory re-weighting. Our ablation studies demonstrate the effectiveness of our contributions in various inference tasks on irregular time grids. Comparisons to state-of-the-art baselines show our model's favourable performance on both synthetic and real-world time-series data.

This paper presents an efficient reversible algorithm for linear regression, both with and without ridge regression. Our reversible algorithm matches the asymptotic time and space complexity of standard irreversible algorithms for this problem. Needed for this result is the expansion of the analysis of efficient reversible matrix multiplication to rectangular matrices and matrix inversion.

北京阿比特科技有限公司