亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multimodal distributions of some physics based model parameters are often encountered in engineering due to different situations such as a change in some environmental conditions, and the presence of some types of damage and nonlinearity. In statistical model updating, for locally identifiable parameters, it can be anticipated that multi-modal posterior distributions would be found. The full characterization of these multi-modal distributions is important as methodologies for structural condition monitoring in structures are frequently based in the comparison of the damaged and healthy models of the structure. The characterization of posterior multi-modal distributions using state-of-the-art sampling techniques would require a large number of simulations of expensive to run physics-based models. Therefore, when a limited number of simulations can be run, as it often occurs in engineering, the traditional sampling techniques would not be able to capture accurately the multimodal distributions. This could potentially lead to large numerical errors when assessing the performance of an engineering structure under uncertainty.

相關內容

《工程》是中國工程院(CAE)于2015年推出的國際開放存取期刊。其目的是提供一個高水平的平臺,傳播和分享工程研發的前沿進展、當前主要研究成果和關鍵成果;報告工程科學的進展,討論工程發展的熱點、興趣領域、挑戰和前景,在工程中考慮人與環境的福祉和倫理道德,鼓勵具有深遠經濟和社會意義的工程突破和創新,使之達到國際先進水平,成為新的生產力,從而改變世界,造福人類,創造新的未來。 期刊鏈接: · 圖片分類 · 得分 · MoDELS · HTTPS ·
2022 年 11 月 28 日

Reliable application of machine learning-based decision systems in the wild is one of the major challenges currently investigated by the field. A large portion of established approaches aims to detect erroneous predictions by means of assigning confidence scores. This confidence may be obtained by either quantifying the model's predictive uncertainty, learning explicit scoring functions, or assessing whether the input is in line with the training distribution. Curiously, while these approaches all state to address the same eventual goal of detecting failures of a classifier upon real-life application, they currently constitute largely separated research fields with individual evaluation protocols, which either exclude a substantial part of relevant methods or ignore large parts of relevant failure sources. In this work, we systematically reveal current pitfalls caused by these inconsistencies and derive requirements for a holistic and realistic evaluation of failure detection. To demonstrate the relevance of this unified perspective, we present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions w.r.t all relevant methods and failure sources. The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation in the abundance of publicized research on confidence scoring. Code and trained models are at //github.com/IML-DKFZ/fd-shifts.

Blockchain (BC) and Software Defined Networking (SDN) are some of the most prominent emerging technologies in recent research. These technologies provide security, integrity, as well as confidentiality in their respective applications. Cloud computing has also been a popular comprehensive technology for several years. Confidential information is often shared with the cloud infrastructure to give customers access to remote resources, such as computation and storage operations. However, cloud computing also presents substantial security threats, issues, and challenges. Therefore, to overcome these difficulties, we propose integrating Blockchain and SDN in the cloud computing platform. In this research, we introduce the architecture to better secure clouds. Moreover, we leverage a distributed Blockchain approach to convey security, confidentiality, privacy, integrity, adaptability, and scalability in the proposed architecture. BC provides a distributed or decentralized and efficient environment for users. Also, we present an SDN approach to improving the reliability, stability, and load balancing capabilities of the cloud infrastructure. Finally, we provide an experimental evaluation of the performance of our SDN and BC-based implementation using different parameters, also monitoring some attacks in the system and proving its efficacy.

Recently, there has been a significant amount of interest in satellite telemetry anomaly detection (AD) using neural networks (NN). For AD purposes, the current approaches focus on either forecasting or reconstruction of the time series, and they cannot measure the level of reliability or the probability of correct detection. Although the Bayesian neural network (BNN)-based approaches are well known for time series uncertainty estimation, they are computationally intractable. In this paper, we present a tractable approximation for BNN based on the Monte Carlo (MC) dropout method for capturing the uncertainty in the satellite telemetry time series, without sacrificing accuracy. For time series forecasting, we employ an NN, which consists of several Long Short-Term Memory (LSTM) layers followed by various dense layers. We employ the MC dropout inside each LSTM layer and before the dense layers for uncertainty estimation. With the proposed uncertainty region and by utilizing a post-processing filter, we can effectively capture the anomaly points. Numerical results show that our proposed time series AD approach outperforms the existing methods from both prediction accuracy and AD perspectives.

Distribution shift occurs when the test distribution differs from the training distribution, and it can considerably degrade performance of machine learning models deployed in the real world. Temporal shifts -- distribution shifts arising from the passage of time -- often occur gradually and have the additional structure of timestamp metadata. By leveraging timestamp metadata, models can potentially learn from trends in past distribution shifts and extrapolate into the future. While recent works have studied distribution shifts, temporal shifts remain underexplored. To address this gap, we curate Wild-Time, a benchmark of 5 datasets that reflect temporal distribution shifts arising in a variety of real-world applications, including patient prognosis and news classification. On these datasets, we systematically benchmark 13 prior approaches, including methods in domain generalization, continual learning, self-supervised learning, and ensemble learning. We use two evaluation strategies: evaluation with a fixed time split (Eval-Fix) and evaluation with a data stream (Eval-Stream). Eval-Fix, our primary evaluation strategy, aims to provide a simple evaluation protocol, while Eval-Stream is more realistic for certain real-world applications. Under both evaluation strategies, we observe an average performance drop of 20% from in-distribution to out-of-distribution data. Existing methods are unable to close this gap. Code is available at //wild-time.github.io/.

Data is a precious resource in today's society, and is generated at an unprecedented and constantly growing pace. The need to store, analyze, and make data promptly available to a multitude of users introduces formidable challenges in modern software platforms. These challenges radically transformed all research fields that gravitate around data management and processing, with the introduction of distributed data-intensive systems that offer new programming models and implementation strategies to handle data characteristics such as its volume, the rate at which it is produced, its heterogeneity, and its distribution. Each data-intensive system brings its specific choices in terms of data model, usage assumptions, synchronization, processing strategy, deployment, guarantees in terms of consistency, fault tolerance, ordering. Yet, the problems data-intensive systems face and the solutions they propose are frequently overlapping. This paper proposes a unifying model that dissects the core functionalities of data-intensive systems, and precisely discusses alternative design and implementation strategies, pointing out their assumptions and implications. The model offers a common ground to understand and compare highly heterogeneous solutions, with the potential of fostering cross-fertilization across research communities and advancing the field. We apply our model by classifying tens of systems: an exercise that brings to interesting observations on the current trends in the domain of data-intensive systems and suggests open research directions.

Fuzzy rough sets are well-suited for working with vague, imprecise or uncertain information and have been succesfully applied in real-world classification problems. One of the prominent representatives of this theory is fuzzy-rough nearest neighbours (FRNN), a classification algorithm based on the classical k-nearest neighbours algorithm. The crux of FRNN is the indiscernibility relation, which measures how similar two elements in the data set of interest are. In this paper, we investigate the impact of this indiscernibility relation on the performance of FRNN classification. In addition to relations based on distance functions and kernels, we also explore the effect of distance metric learning on FRNN for the first time. Furthermore, we also introduce an asymmetric, class-specific relation based on the Mahalanobis distance which uses the correlation within each class, and which shows a significant improvement over the regular Mahalanobis distance, but is still beaten by the Manhattan distance. Overall, the Neighbourhood Components Analysis algorithm is found to be the best performer, trading speed for accuracy.

Objective: We aimed to use adaptive psychophysics methods, which is a Bayesian Model, to measure users' time perception of various progress bar quantitatively. Background: Progress bar informs users about the status of ongoing processes. Progress bars frequently display nonuniform speed patterns, such as acceleration and deceleration. However, which progress bar is perceived faster remain unclear. Methods: We measured the point of subject equality (PSE) of the constant progress bar toward four different 5-second progress bars with a non-constant speed. To measure PSE, in each trial, a constant progress bar and a non-constant progress bar were presented to participants. Participants needed to judge which one is shorter. Based on their choice, the model generated the time duration of constant progress bar in next trial. After 40 trials for each non-constant progress bar, the PSE was calculated by the model. Eye tracking was recorded during the experiment.Results: Our results show that the constant progress bar and speed-up progress bar are perceived to be faster. The anchoring effect fits the results of our study, indicating that the final part of the progress bar is more important for time perception. Moreover, the eye-tracking results indicate that the progress bar is perceived to be slower is related to the overload of cognitive resources.Conclusion: The constant progress bar and speed-up progress bar are perceived as the quickest. Application: The results suggest that UX design can use constant or speed-up progress bar, in order to improve user experience in waiting.

Offline reinforcement learning, which aims at optimizing sequential decision-making strategies with historical data, has been extensively applied in real-life applications. State-Of-The-Art algorithms usually leverage powerful function approximators (e.g. neural networks) to alleviate the sample complexity hurdle for better empirical performances. Despite the successes, a more systematic understanding of the statistical complexity for function approximation remains lacking. Towards bridging the gap, we take a step by considering offline reinforcement learning with differentiable function class approximation (DFA). This function class naturally incorporates a wide range of models with nonlinear/nonconvex structures. Most importantly, we show offline RL with differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning (PFQL) algorithm, and our results provide the theoretical basis for understanding a variety of practical heuristics that rely on Fitted Q-Iteration style design. In addition, we further improve our guarantee with a tighter instance-dependent characterization. We hope our work could draw interest in studying reinforcement learning with differentiable function approximation beyond the scope of current research.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

北京阿比特科技有限公司