亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Knowledge Bases (KBs) find applications in many knowledge-intensive tasks and, most notably, in information retrieval. Wikidata is one of the largest public general-purpose KBs. Yet, its collaborative nature has led to a convoluted schema and taxonomy. The YAGO 4 KB cleaned up the taxonomy by incorporating the ontology of Schema.org, resulting in a cleaner structure amenable to automated reasoning. However, it also cut away large parts of the Wikidata taxonomy, which is essential for information retrieval. In this paper, we extend YAGO 4 with a large part of the Wikidata taxonomy - while respecting logical constraints and the distinction between classes and instances. This yields YAGO 4.5, a new, logically consistent version of YAGO that adds a rich layer of informative classes. An intrinsic and an extrinsic evaluation show the value of the new resource.

相關內容

YAGO是由德國馬普研究所研制的鏈接數據庫。YAGO主要集成了Wikipedia、WordNet和GeoNames三個來源的數據。YAGO將WordNet的詞匯定義與Wikipedia的分類體系進行了融合集成,使得YAGO具有更加豐富的實體分類體系。YAGO還考慮了時間和空間知識,為很多知識條目增加了時間和空間維度的屬性描述。目前,YAGO包含1.2億條三元組知識。YAGO是IBM Watson的后端知識庫之一。

Continual learning (CL) aims to help deep neural networks to learn new knowledge while retaining what has been learned. Recently, pre-trained vision-language models such as CLIP, with powerful generalizability, have been gaining traction as practical CL candidates. However, the domain mismatch between the pre-training and the downstream CL tasks calls for finetuning of the CLIP on the latter. The deterministic nature of the existing finetuning methods makes them overlook the many possible interactions across the modalities and deems them unsafe for high-risk CL tasks requiring reliable uncertainty estimation. To address these, our work proposes Continual LeArning with Probabilistic finetuning (CLAP). CLAP develops probabilistic modeling over task-specific modules with visual-guided text features, providing more calibrated finetuning in CL. It further alleviates forgetting by exploiting the rich pre-trained knowledge of CLIP for weight initialization and distribution regularization of task-specific modules. Cooperating with the diverse range of existing prompting methods, CLAP can surpass the predominant deterministic finetuning approaches for CL with CLIP. We conclude with out-of-the-box applications of superior uncertainty estimation abilities of CLAP for novel data detection and exemplar selection within CL setups. Our code is available at \url{//github.com/srvCodes/clap4clip}.

We introduce ``Generative Fusion Decoding'' (GFD), a novel shallow fusion framework, utilized to integrate Large Language Models (LLMs) into multi-modal text recognition systems such as automatic speech recognition (ASR) and optical character recognition (OCR). We derive the formulas necessary to enable GFD to operate across mismatched token spaces of different models by mapping text token space to byte token space, enabling seamless fusion during the decoding process. The framework is plug-and-play, compatible with various auto-regressive models, and does not require re-training for feature alignment, thus overcoming limitations of previous fusion techniques. We highlight three main advantages of GFD: First, by simplifying the complexity of aligning different model sample spaces, GFD allows LLMs to correct errors in tandem with the recognition model, reducing computation latencies. Second, the in-context learning ability of LLMs is fully capitalized by GFD, increasing robustness in long-form speech recognition and instruction aware speech recognition. Third, GFD enables fusing recognition models deficient in Chinese text recognition with LLMs extensively trained on Chinese. Our evaluation demonstrates that GFD significantly improves performance in ASR and OCR tasks, with ASR reaching state-of-the-art in the NTUML2021 benchmark. GFD provides a significant step forward in model integration, offering a unified solution that could be widely applicable to leveraging existing pre-trained models through step by step fusion.

Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets. Traditionally, this involves using dimensionality reduction (DR) methods to project data onto lower-dimensional spaces or organizing points into meaningful clusters (clustering). In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem. This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem. We empirically demonstrate its relevance to the identification of low-dimensional prototypes representing data at different scales, across multiple image and genomic datasets.

Face Recognition Systems (FRS) have increasingly integrated into critical applications, including surveillance and user authentication, highlighting their pivotal role in modern security systems. Recent studies have revealed vulnerabilities in FRS to adversarial (e.g., adversarial patch attacks) and backdoor attacks (e.g., training data poisoning), raising significant concerns about their reliability and trustworthiness. Previous studies primarily focus on traditional adversarial or backdoor attacks, overlooking the resource-intensive or privileged-manipulation nature of such threats, thus limiting their practical generalization, stealthiness, universality and robustness. Correspondingly, in this paper, we delve into the inherent vulnerabilities in FRS through user studies and preliminary explorations. By exploiting these vulnerabilities, we identify a novel attack, facial identity backdoor attack dubbed FIBA, which unveils a potentially more devastating threat against FRS:an enrollment-stage backdoor attack. FIBA circumvents the limitations of traditional attacks, enabling broad-scale disruption by allowing any attacker donning a specific trigger to bypass these systems. This implies that after a single, poisoned example is inserted into the database, the corresponding trigger becomes a universal key for any attackers to spoof the FRS. This strategy essentially challenges the conventional attacks by initiating at the enrollment stage, dramatically transforming the threat landscape by poisoning the feature database rather than the training data.

Understanding the process of emotion generation is crucial for analyzing the causes behind emotions. Causal Emotion Entailment (CEE), an emotion-understanding task, aims to identify the causal utterances in a conversation that stimulate the emotions expressed in a target utterance. However, current works in CEE mainly focus on modeling semantic and emotional interactions in conversations, neglecting the exploration of the emotion-generation process. This hinders the models from deeply understanding emotions, restricting their ability to produce explainable predictions. In this work, inspired by the emotion generation process of "stimulus-appraisal-emotion" in the cognitive appraisal theory, we introduce a step-by-step reasoning method, Emotion-Cause Reasoning Chain (ECR-Chain), to infer the stimulus from the target emotional expressions in conversations. Specifically, we first introduce the ECR-Chain to ChatGPT via few-shot prompting, which significantly improves its performance on the CEE task. We further propose an automated construction process to utilize ChatGPT in building an ECR-Chain set, which can enhance the reasoning abilities of smaller models through supervised training and assist the Vicuna-7B model in achieving state-of-the-art CEE performance. Moreover, our methods can enable these generative language models to effectively perform emotion-cause reasoning in an explainable manner. Our code, data and more details are at //github.com/hzp3517/ECR-Chain.

Unsupervised Outlier Detection (UOD) is an important data mining task. With the advance of deep learning, deep Outlier Detection (OD) has received broad interest. Most deep UOD models are trained exclusively on clean datasets to learn the distribution of the normal data, which requires huge manual efforts to clean the real-world data if possible. Instead of relying on clean datasets, some approaches directly train and detect on unlabeled contaminated datasets, leading to the need for methods that are robust to such conditions. Ensemble methods emerged as a superior solution to enhance model robustness against contaminated training sets. However, the training time is greatly increased by the ensemble. In this study, we investigate the impact of outliers on the training phase, aiming to halt training on unlabeled contaminated datasets before performance degradation. Initially, we noted that blending normal and anomalous data causes AUC fluctuations, a label-dependent measure of detection accuracy. To circumvent the need for labels, we propose a zero-label entropy metric named Loss Entropy for loss distribution, enabling us to infer optimal stopping points for training without labels. Meanwhile, we theoretically demonstrate negative correlation between entropy metric and the label-based AUC. Based on this, we develop an automated early-stopping algorithm, EntropyStop, which halts training when loss entropy suggests the maximum model detection capability. We conduct extensive experiments on ADBench (including 47 real datasets), and the overall results indicate that AutoEncoder (AE) enhanced by our approach not only achieves better performance than ensemble AEs but also requires under 1\% of training time. Lastly, our proposed metric and early-stopping approach are evaluated on other deep OD models, exhibiting their broad potential applicability.

Network Intrusion Detection Systems (NIDSs) detect intrusion attacks in network traffic. In particular, machine-learning-based NIDSs have attracted attention because of their high detection rates of unknown attacks. A distributed processing framework for machine-learning-based NIDSs employing a scalable distributed stream processing system has been proposed in the literature. However, its performance, when machine-learning-based classifiers are implemented has not been comprehensively evaluated. In this study, we implement five representative classifiers (Decision Tree, Random Forest, Naive Bayes, SVM, and kNN) based on this framework and evaluate their throughput and latency. By conducting the experimental measurements, we investigate the difference in the processing performance among these classifiers and the bottlenecks in the processing performance of the framework.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

Machine learning about language can be improved by supplying it with specific knowledge and sources of external information. We present here a new version of the linked open data resource ConceptNet that is particularly well suited to be used with modern NLP techniques such as word embeddings. ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use. When ConceptNet is combined with word embeddings acquired from distributional semantics (such as word2vec), it provides applications with understanding that they would not acquire from distributional semantics alone, nor from narrower resources such as WordNet or DBPedia. We demonstrate this with state-of-the-art results on intrinsic evaluations of word relatedness that translate into improvements on applications of word vectors, including solving SAT-style analogies.

北京阿比特科技有限公司