We introduce the concept of an imprecise Markov semigroup $\mathbf{Q}$. It is a tool that allows to represent ambiguity around both the initial and the transition probabilities of a Markov process via a compact collection of plausible Markov semigroups, each associated with a (different, plausible) Markov process. We use techniques from geometry, functional analysis, and (high dimensional) probability to study the ergodic behavior of $\mathbf{Q}$. We show that, if the initial distribution of the Markov processes associated with the elements of $\mathbf{Q}$ is known and invariant, under some conditions that also involve the geometry of the state space, eventually the ambiguity around their transition probability fades. We call this property ergodicity of the imprecise Markov semigroup, and we relate it to the classical notion of ergodicity. We prove ergodicity both when the state space is Euclidean or a Riemannian manifold, and when it is an arbitrary measurable space. The importance of our findings for the fields of machine learning and computer vision is also discussed.
Classic stochastic volatility models assume volatility is unobservable. We use the VIX for consider it observable, and use the Volatility Index: S\&P 500 VIX. This index was designed to measure volatility of S&P 500. We apply it to a different segment: Corporate bond markets. We fit time series models for spreads between corporate and 10-year Treasury bonds. Next, we divide residuals by VIX. Our main idea is such division makes residuals closer to the ideal case of a Gaussian white noise. This is remarkable, since these residuals and VIX come from separate market segments. We also discuss total returns of Bank of America corporate bonds. We conclude with the analysis of long-term behavior of these models.
How hard is it to estimate a discrete-time signal $(x_{1}, ..., x_{n}) \in \mathbb{C}^n$ satisfying an unknown linear recurrence relation of order $s$ and observed in i.i.d. complex Gaussian noise? The class of all such signals is parametric but extremely rich: it contains all exponential polynomials over $\mathbb{C}$ with total degree $s$, including harmonic oscillations with $s$ arbitrary frequencies. Geometrically, this class corresponds to the projection onto $\mathbb{C}^{n}$ of the union of all shift-invariant subspaces of $\mathbb{C}^\mathbb{Z}$ of dimension $s$. We show that the statistical complexity of this class, as measured by the squared minimax radius of the $(1-\delta)$-confidence $\ell_2$-ball, is nearly the same as for the class of $s$-sparse signals, namely $O\left(s\log(en) + \log(\delta^{-1})\right) \cdot \log^2(es) \cdot \log(en/s).$ Moreover, the corresponding near-minimax estimator is tractable, and it can be used to build a test statistic with a near-minimax detection threshold in the associated detection problem. These statistical results rest upon an approximation-theoretic one: we show that finite-dimensional shift-invariant subspaces admit compactly supported reproducing kernels whose Fourier spectra have nearly the smallest possible $\ell_p$-norms, for all $p \in [1,+\infty]$ at once.
We consider the problem of estimating the number of clusters (k) in a dataset. We propose a non-parametric approach to the problem that utilizes similarity graphs to construct a robust statistic that effectively captures similarity information among observations. This graph-based statistic is applicable to datasets of any dimension, is computationally efficient to obtain, and can be paired with any kind of clustering technique. Asymptotic theory is developed to establish the selection consistency of the proposed approach. Simulation studies demonstrate that the graph-based statistic outperforms existing methods for estimating k, especially in the high-dimensional setting. We illustrate its utility on an imaging dataset and an RNA-seq dataset.
In computer graphics, simplifying a polygonal mesh surface~$\mathcal{M}$ into a geometric proxy that maintains close conformity to~$\mathcal{M}$ is crucial, as it can significantly reduce computational demands in various applications. In this paper, we introduce the Implicit Thin Shell~(ITS), a concept designed to implicitly represent the sandwich-walled space surrounding~$\mathcal{M}$, defined as~$\{\textbf{x}\in\mathbb{R}^3|\epsilon_1\leq f(\textbf{x}) \leq \epsilon_2, \epsilon_1< 0, \epsilon_2>0\}$. Here, $f$ is an approximation of the signed distance function~(SDF) of~$\mathcal{M}$, and we aim to minimize the thickness~$\epsilon_2-\epsilon_1$. To achieve a balance between mathematical simplicity and expressive capability in~$f$, we employ a tri-variate tensor-product B-spline to represent~$f$. This representation is coupled with adaptive knot grids that adapt to the inherent shape variations of~$\mathcal{M}$, while restricting~$f$'s basis functions to the first degree. In this manner, the analytical form of~$f$ can be rapidly determined by solving a sparse linear system. Moreover, the process of identifying the extreme values of~$f$ among the infinitely many points on~$\mathcal{M}$ can be simplified to seeking extremes among a finite set of candidate points. By exhausting the candidate points, we find the extreme values~$\epsilon_1<0$ and $\epsilon_2>0$ that minimize the thickness. The constructed ITS is guaranteed to wrap~$\mathcal{M}$ rigorously, without any intersections between the bounding surfaces and~$\mathcal{M}$. ITS offers numerous potential applications thanks to its rigorousness, tightness, expressiveness, and computational efficiency. We demonstrate the efficacy of ITS in rapid inside-outside tests and in mesh simplification through the control of global error.
We propose the convex floating body membership problem, which consists of efficiently determining when a query point $a\in\mathbb{R}^d$ belongs to the so-called $\varepsilon$-convex floating body of a given bounded convex domain $K\subset\mathbb{R}^d$. We consider this problem in an approximate setting, i.e., given a parameter $\delta>0$, the query can be answered either way if the Hilbert distance in $K$ of $a$ from the boundary of a relatively-scaled $\varepsilon$-convex floating body is less than $\delta$. We present a data structure for this problem that has storage size $O(\delta^{-d}\varepsilon^{-(d-1)/2})$ and achieves query time of $O({\delta^{-1}}\ln 1/\varepsilon)$. Our construction is motivated by a recent work of Abdelkader and Mount on APM queries, and relies on a comparison of convex floating bodies with balls in the Hilbert metric on $K$.
The prophet secretary problem is a combination of the prophet inequality and the secretary problem, where elements are drawn from known independent distributions and arrive in uniformly random order. In this work, we design 1) a $0.688$-competitive algorithm, that breaks the $0.675$ barrier of blind strategies (Correa, Saona, Ziliotto, 2021), and 2) a $0.641$-competitive algorithm for the prophet secretary matching problem, that breaks the $1-1/e\approx 0.632$ barrier for the first time. Our second result also applies to the query-commit model of weighted stochastic matching and improves the state-of-the-art ratio (Derakhshan and Farhadi, 2023).
It is becoming increasingly difficult to improve the performance of a a single process (thread) on a computer due to physical limitations. Modern systems use multi-core processors in which multiple processes (threads) may run concurrently. A lock-free data structure can allow these processes to communicate with each other without requiring mutual exclusion, and may increase the amount of work they may perform in parallel rather than sequentially, thus improving the performance of the system as a whole. This paper contains an implementation of Ko's Lock-Free Binary Trie, which stores a dynamic set of keys from an ordered universe. It supports insert, remove, search and predecessor operations. One novel component of this implementation is a lock-free linked list which allows multiple processes to attempt to insert the same node, but which prevents a node from being reinserted once it has been removed from the list. The final section of this paper contains an experimental comparison of this implementation against other data structures which implement the same abstract data type (ADT) as the lock-free trie. Analysis of these experiments reveal that the implementation of Ko's Trie performs better than existing theoretical implementations of this ADT when the universe of keys is large, when removes are rare and when the number of processes performing operations concurrently is low.
The delay monad provides a way to introduce general recursion in type theory. To write programs that use a wide range of computational effects directly in type theory, we need to combine the delay monad with the monads of these effects. Here we present a first systematic study of such combinations. We study both the coinductive delay monad and its guarded recursive cousin, giving concrete examples of combining these with well-known computational effects. We also provide general theorems stating which algebraic effects distribute over the delay monad, and which do not. Lastly, we salvage some of the impossible cases by considering distributive laws up to weak bisimilarity.
We consider a matching problem in a bipartite graph $G$ where every vertex has a capacity and a strict preference order on its neighbors. Furthermore, there is a cost function on the edge set. We assume $G$ admits a perfect matching, i.e., one that fully matches all vertices. It is only perfect matchings that are feasible for us and we are interested in those perfect matchings that are popular within the set of perfect matchings. It is known that such matchings (called popular perfect matchings) always exist and can be efficiently computed. What we seek here is not any popular perfect matching, but a min-cost one. We show a polynomial-time algorithm for finding such a matching; this is via a characterization of popular perfect matchings in $G$ in terms of stable matchings in a colorful auxiliary instance. This is a generalization of such a characterization that was known in the one-to-one setting.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.