Texture modeling and synthesis are essential for enhancing the realism of virtual environments. Methods that directly synthesize textures in 3D offer distinct advantages to the UV-mapping-based methods as they can create seamless textures and align more closely with the ways textures form in nature. We propose Mesh Neural Cellular Automata (MeshNCA), a method that directly synthesizes dynamic textures on 3D meshes without requiring any UV maps. MeshNCA is a generalized type of cellular automata that can operate on a set of cells arranged on non-grid structures such as the vertices of a 3D mesh. MeshNCA accommodates multi-modal supervision and can be trained using different targets such as images, text prompts, and motion vector fields. Only trained on an Icosphere mesh, MeshNCA shows remarkable test-time generalization and can synthesize textures on unseen meshes in real time. We conduct qualitative and quantitative comparisons to demonstrate that MeshNCA outperforms other 3D texture synthesis methods in terms of generalization and producing high-quality textures. Moreover, we introduce a way of grafting trained MeshNCA instances, enabling interpolation between textures. MeshNCA allows several user interactions including texture density/orientation controls, grafting/regenerate brushes, and motion speed/direction controls. Finally, we implement the forward pass of our MeshNCA model using the WebGL shading language and showcase our trained models in an online interactive demo, which is accessible on personal computers and smartphones and is available at //meshnca.github.io.
We consider an online decision-making problem with a reward function defined over graph-structured data. We formally formulate the problem as an instance of graph action bandit. We then propose \texttt{GNN-TS}, a Graph Neural Network (GNN) powered Thompson Sampling (TS) algorithm which employs a GNN approximator for estimating the mean reward function and the graph neural tangent features for uncertainty estimation. We prove that, under certain boundness assumptions on the reward function, GNN-TS achieves a state-of-the-art regret bound which is (1) sub-linear of order $\tilde{\mathcal{O}}((\tilde{d} T)^{1/2})$ in the number of interaction rounds, $T$, and a notion of effective dimension $\tilde{d}$, and (2) independent of the number of graph nodes. Empirical results validate that our proposed \texttt{GNN-TS} exhibits competitive performance and scales well on graph action bandit problems.
Equivariant deep learning architectures exploit symmetries in learning problems to improve the sample efficiency of neural-network-based models and their ability to generalise. However, when modelling real-world data, learning problems are often not exactly equivariant, but only approximately. For example, when estimating the global temperature field from weather station observations, local topographical features like mountains break translation equivariance. In these scenarios, it is desirable to construct architectures that can flexibly depart from exact equivariance in a data-driven way. In this paper, we develop a general approach to achieving this using existing equivariant architectures. Our approach is agnostic to both the choice of symmetry group and model architecture, making it widely applicable. We consider the use of approximately equivariant architectures in neural processes (NPs), a popular family of meta-learning models. We demonstrate the effectiveness of our approach on a number of synthetic and real-world regression experiments, demonstrating that approximately equivariant NP models can outperform both their non-equivariant and strictly equivariant counterparts.
We propose a unified multinomial link model for analyzing categorical responses. It not only covers the existing multinomial logistic models and their extensions as special cases, but also includes new models that can incorporate the observations with NA or Unknown responses in the data analysis. We provide explicit formulae and detailed algorithms for finding the maximum likelihood estimates of the model parameters and computing the Fisher information matrix. Our algorithms solve the infeasibility issue of existing statistical software on estimating parameters of cumulative link models. The applications to real datasets show that the new models can fit the data significantly better, and the corresponding data analysis may correct the misleading conclusions due to missing responses.
Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 750M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4o demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.
Edit distance is an important measure of string similarity. It counts the number of insertions, deletions and substitutions one has to make to a string $x$ to get a string $y$. In this paper we design an almost linear-size sketching scheme for computing edit distance up to a given threshold $k$. The scheme consists of two algorithms, a sketching algorithm and a recovery algorithm. The sketching algorithm depends on the parameter $k$ and takes as input a string $x$ and a public random string $\rho$ and computes a sketch $sk_{\rho}(x;k)$, which is a digested version of $x$. The recovery algorithm is given two sketches $sk_{\rho}(x;k)$ and $sk_{\rho}(y;k)$ as well as the public random string $\rho$ used to create the two sketches, and (with high probability) if the edit distance $ED(x,y)$ between $x$ and $y$ is at most $k$, will output $ED(x,y)$ together with an optimal sequence of edit operations that transforms $x$ to $y$, and if $ED(x,y) > k$ will output LARGE. The size of the sketch output by the sketching algorithm on input $x$ is $k{2^{O(\sqrt{\log(n)\log\log(n)})}}$ (where $n$ is an upper bound on length of $x$). The sketching and recovery algorithms both run in time polynomial in $n$. The dependence of sketch size on $k$ is information theoretically optimal and improves over the quadratic dependence on $k$ in schemes of Kociumaka, Porat and Starikovskaya (FOCS'2021), and Bhattacharya and Kouck\'y (STOC'2023).
Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically. We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there are $n$ shareholders, each holding a share of a classical secret represented as a quantum state. They can recover the secret once all parties (or at least $t$ parties) come together with their shares. Importantly, it should be infeasible to copy their own shares and send the copies to two non-communicating parties, enabling both of them to recover the secret. Our work initiates a formal investigation into the realm of unclonable secret sharing, shedding light on its implications, constructions, and inherent limitations. ** Connections: We explore the connections between USS and other quantum cryptographic primitives such as unclonable encryption and position verification, showing the difficulties to achieve USS in different scenarios. **Limited Entanglement: In the case where the adversarial shareholders do not share any entanglement or limited entanglement, we demonstrate information-theoretic constructions for USS. **Large Entanglement: If we allow the adversarial shareholders to have unbounded entanglement resources (and unbounded computation), we prove that unclonable secret sharing is impossible. On the other hand, in the quantum random oracle model where the adversary can only make a bounded polynomial number of queries, we show a construction secure even with unbounded entanglement. Furthermore, even when these adversaries possess only a polynomial amount of entanglement resources, we establish that any unclonable secret sharing scheme with a reconstruction function implementable using Cliffords and logarithmically many T-gates is also unattainable.
Denoising diffusion models have become ubiquitous for generative modeling. The core idea is to transport the data distribution to a Gaussian by using a diffusion. Approximate samples from the data distribution are then obtained by estimating the time-reversal of this diffusion using score matching ideas. We follow here a similar strategy to sample from unnormalized probability densities and compute their normalizing constants. However, the time-reversed diffusion is here simulated by using an original iterative particle scheme relying on a novel score matching loss. Contrary to standard denoising diffusion models, the resulting Particle Denoising Diffusion Sampler (PDDS) provides asymptotically consistent estimates under mild assumptions. We demonstrate PDDS on multimodal and high dimensional sampling tasks.
It was recently conjectured that every component of a discrete-time rational dynamical system is a solution to an algebraic difference equation that is linear in its highest-shift term (a quasi-linear equation). We prove that the conjecture holds in the special case of holonomic sequences, which can straightforwardly be represented by rational dynamical systems. We propose two algorithms for converting holonomic recurrence equations into such quasi-linear equations. The two algorithms differ in their efficiency and the minimality of orders in their outputs.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.