亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We identify the average dose-response function (ADRF) for a continuously valued error-contaminated treatment by a weighted conditional expectation. We then estimate the weights nonparametrically by maximising a local generalised empirical likelihood subject to an expanding set of conditional moment equations incorporated into the deconvolution kernels. Thereafter, we construct a deconvolution kernel estimator of ADRF. We derive the asymptotic bias and variance of our ADRF estimator and provide its asymptotic linear expansion, which helps conduct statistical inference. To select our smoothing parameters, we adopt the simulation-extrapolation method and propose a new extrapolation procedure to stabilise the computation. Monte Carlo simulations and a real data study illustrate our method's practical performance.

相關內容

We quantify the parameter stability of a spherical Gaussian Mixture Model (sGMM) under small perturbations in distribution space. Namely, we derive the first explicit bound to show that for a mixture of spherical Gaussian $P$ (sGMM) in a pre-defined model class, all other sGMM close to $P$ in this model class in total variation distance has a small parameter distance to $P$. Further, this upper bound only depends on $P$. The motivation for this work lies in providing guarantees for fitting Gaussian mixtures; with this aim in mind, all the constants involved are well defined and distribution free conditions for fitting mixtures of spherical Gaussians. Our results tighten considerably the existing computable bounds, and asymptotically match the known sharp thresholds for this problem.

In this paper we consider change-points in multiple sequences with the objective of minimizing the estimation error of a sequence by making use of information from other sequences. This is in contrast to recent interest on change-points in multiple sequences where the focus is on detection of common change-points. We start with the canonical case of a single sequence with constant change-point intensities. We consider two measures of a change-point algorithm. The first is the probability of estimating the change-point with no error. The second is the expected distance between the true and estimated change-points. We provide a theoretical upper bound for the no error probability, and a lower bound for the expected distance, that must be satisfied by all algorithms. We propose a scan-CUSUM algorithm that achieves the no error upper bound and come close to the distance lower bound. We next consider the case of non-constant intensities and establish sharp conditions under which estimation error can go to zero. We propose an extension of the scan-CUSUM algorithm for a non-constant intensity function, and show that it achieves asymptotically zero error at the boundary of the zero-error regime. We illustrate an application of the scan-CUSUM algorithm on multiple sequences sharing an unknown, non-constant intensity function. We estimate the intensity function from the change-point profile likelihoods of all sequences and apply scan-CUSUM on the estimated intensity function.

The problem of generalization and transportation of treatment effect estimates from a study sample to a target population is central to empirical research and statistical methodology. In both randomized experiments and observational studies, weighting methods are often used with this objective. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. In this work, we provide a justification and an implementation for weighting in a single step. We show a formal connection between this one-step method and inverse probability and inverse odds weighting. We demonstrate that the resulting estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We evaluate the performance of the one-step estimator in a simulation study. We illustrate its use in a case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California. We provide R code implementing the methodology.

Regression models that ignore measurement error in predictors may produce highly biased estimates leading to erroneous inferences. It is well known that it is extremely difficult to take measurement error into account in Gaussian nonparametric regression. This problem becomes tremendously more difficult when considering other families such as logistic regression, Poisson and negative-binomial. For the first time, we present a method aiming to correct for measurement error when estimating regression functions flexibly covering virtually all distributions and link functions regularly considered in generalized linear models. This approach depends on approximating the first and the second moment of the response after integrating out the true unobserved predictors in a semiparametric generalized linear model. Unlike previous methods, this method is not restricted to truncated splines and can utilize various basis functions. Through extensive simulation studies, we study the performance of our method under many scenarios.

Estimating the Shannon entropy of a discrete distribution from which we have only observed a small sample is challenging. Estimating other information-theoretic metrics, such as the Kullback-Leibler divergence between two sparsely sampled discrete distributions, is even harder. Existing approaches to address these problems have shortcomings: they are biased, heuristic, work only for some distributions, and/or cannot be applied to all information-theoretic metrics. Here, we propose a fast, semi-analytical estimator for sparsely sampled distributions that is efficient, precise, and general. Its derivation is grounded in probabilistic considerations and uses a hierarchical Bayesian approach to extract as much information as possible from the few observations available. Our approach provides estimates of the Shannon entropy with precision at least comparable to the state of the art, and most often better. It can also be used to obtain accurate estimates of any other information-theoretic metric, including the notoriously challenging Kullback-Leibler divergence. Here, again, our approach performs consistently better than existing estimators.

Researchers have widely used exploratory factor analysis (EFA) to learn the latent structure underlying multivariate data. Rotation and regularised estimation are two classes of methods in EFA that they often use to find interpretable loading matrices. In this paper we propose a new family of oblique rotations based on component-wise $L^p$ loss functions $(0 < p\leq 1)$ that is closely related to an $L^p$ regularised estimator. We develop model selection and post-selection inference procedures based on the proposed rotation method. When the true loading matrix is sparse, the proposed method tends to outperform traditional rotation and regularised estimation methods in terms of statistical accuracy and computational cost. Since the proposed loss functions are nonsmooth, we develop an iteratively reweighted gradient projection algorithm for solving the optimisation problem. We also develop theoretical results that establish the statistical consistency of the estimation, model selection, and post-selection inference. We evaluate the proposed method and compare it with regularised estimation and traditional rotation methods via simulation studies. We further illustrate it using an application to the Big Five personality assessment.

We discuss nonparametric estimators of the distribution of the incubation time of a disease. The classical approach in these models is to use parametric families like Weibull, log-normal or gamma in the estimation procedure. We analyze instead the nonparametric maximum likelihood estimator (MLE) and show that, under some conditions, its rate of convergence is cube root $n$ and that its limit behavior is given by Chernoff's distribution. We also study smooth estimates, based on the MLE. The density estimates, based on the MLE, are capable of catching finer or unexpected aspects of the density, in contrast with the classical parametric methods. {\tt R} scripts are provided for the nonparametric methods.

Probabilistic graphical models (PGMs) provide a compact and flexible framework to model very complex real-life phenomena. They combine the probability theory which deals with uncertainty and logical structure represented by a graph which allows one to cope with the computational complexity and also interpret and communicate the obtained knowledge. In the thesis, we consider two different types of PGMs: Bayesian networks (BNs) which are static, and continuous time Bayesian networks which, as the name suggests, have a temporal component. We are interested in recovering their true structure, which is the first step in learning any PGM. This is a challenging task, which is interesting in itself from the causal point of view, for the purposes of interpretation of the model and the decision-making process. All approaches for structure learning in the thesis are united by the same idea of maximum likelihood estimation with the LASSO penalty. The problem of structure learning is reduced to the problem of finding non-zero coefficients in the LASSO estimator for a generalized linear model. In the case of CTBNs, we consider the problem both for complete and incomplete data. We support the theoretical results with experiments.

Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-$m$ rate, where $m$ is the number of simulated samples. This can lead to significant computational challenges since a large $m$ is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators.

This paper studies multivariate nonparametric change point localization and inference problems. The data consists of a multivariate time series with potentially short range dependence. The distribution of this data is assumed to be piecewise constant with densities in a H\"{o}lder class. The change points, or times at which the distribution changes, are unknown. We derive the limiting distributions of the change point estimators when the minimal jump size vanishes or remains constant, a first in the literature on change point settings. We are introducing two new features: a consistent estimator that can detect when a change is happening in data with short-term dependence, and a consistent block-type long-run variance estimator. Numerical evidence is provided to back up our theoretical results.

北京阿比特科技有限公司