The traditional finite-difference time-domain (FDTD) method is constrained by the Courant-Friedrich-Levy (CFL) condition and suffers from the notorious staircase error in electromagnetic simulations. This paper proposes a three-dimensional conformal locally-one-dimensional FDTD (CLOD-FDTD) method to address the two issues for modeling perfectly electrical conducting (PEC) objects. By considering the partially filled cells, the proposed CLOD-FDTD method can significantly improve the accuracy compared with the traditional LOD-FDTD method and the FDTD method. At the same time, the proposed method preserves unconditional stability, which is analyzed and numerically validated using the Von-Neuman method. Significant gains in CPU time are achieved by using large time steps without sacrificing accuracy. The accuracy and efficiency of the proposed method are validated through two numerical examples.
We consider Broyden's method and some accelerated schemes for nonlinear equations having a strongly regular singularity of first order with a one-dimensional nullspace. Our two main results are as follows. First, we show that the use of a preceding Newton-like step ensures convergence for starting points in a starlike domain with density 1. This extends the domain of convergence of these methods significantly. Second, we establish that the matrix updates of Broyden's method converge q-linearly with the same asymptotic factor as the iterates. This contributes to the long-standing question whether the Broyden matrices converge by showing that this is indeed the case for the setting at hand. Furthermore, we prove that the Broyden directions violate uniform linear independence, which implies that existing results for convergence of the Broyden matrices cannot be applied. Numerical experiments of high precision confirm the enlarged domain of convergence, the q-linear convergence of the matrix updates, and the lack of uniform linear independence. In addition, they suggest that these results can be extended to singularities of higher order and that Broyden's method can converge r-linearly without converging q-linearly. The underlying code is freely available.
Deep learning models usually suffer from domain shift issues, where models trained on one source domain do not generalize well to other unseen domains. In this work, we investigate the single-source domain generalization problem: training a deep network that is robust to unseen domains, under the condition that training data is only available from one source domain, which is common in medical imaging applications. We tackle this problem in the context of cross-domain medical image segmentation. Under this scenario, domain shifts are mainly caused by different acquisition processes. We propose a simple causality-inspired data augmentation approach to expose a segmentation model to synthesized domain-shifted training examples. Specifically, 1) to make the deep model robust to discrepancies in image intensities and textures, we employ a family of randomly-weighted shallow networks. They augment training images using diverse appearance transformations. 2) Further we show that spurious correlations among objects in an image are detrimental to domain robustness. These correlations might be taken by the network as domain-specific clues for making predictions, and they may break on unseen domains. We remove these spurious correlations via causal intervention. This is achieved by resampling the appearances of potentially correlated objects independently. The proposed approach is validated on three cross-domain segmentation tasks: cross-modality (CT-MRI) abdominal image segmentation, cross-sequence (bSSFP-LGE) cardiac MRI segmentation, and cross-center prostate MRI segmentation. The proposed approach yields consistent performance gains compared with competitive methods when tested on unseen domains.
To overcome topological constraints and improve the expressiveness of normalizing flow architectures, Wu, K\"ohler and No\'e introduced stochastic normalizing flows which combine deterministic, learnable flow transformations with stochastic sampling methods. In this paper, we consider stochastic normalizing flows from a Markov chain point of view. In particular, we replace transition densities by general Markov kernels and establish proofs via Radon-Nikodym derivatives which allows to incorporate distributions without densities in a sound way. Further, we generalize the results for sampling from posterior distributions as required in inverse problems. The performance of the proposed conditional stochastic normalizing flow is demonstrated by numerical examples.
We consider a biochemical model that consists of a system of partial differential equations based on reaction terms and subject to non--homogeneous Dirichlet boundary conditions. The model is discretised using the gradient discretisation method (GDM) which is a framework covering a large class of conforming and non conforming schemes. Under classical regularity assumptions on the exact solutions, the GDM enables us to establish the existence of the model solutions in a weak sense, and strong convergence for the approximate solution and its approximate gradient. Numerical test employing a finite volume method is presented to demonstrate the behaviour of the solutions to the model.
We propose a numerical method based on physics-informed Random Projection Neural Networks for the solution of Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs) with a focus on stiff problems. We address an Extreme Learning Machine with a single hidden layer with radial basis functions having as widths uniformly distributed random variables, while the values of the weights between the input and the hidden layer are set equal to one. The numerical solution of the IVPs is obtained by constructing a system of nonlinear algebraic equations, which is solved with respect to the output weights by the Gauss-Newton method, using a simple adaptive scheme for adjusting the time interval of integration. To assess its performance, we apply the proposed method for the solution of four benchmark stiff IVPs, namely the Prothero-Robinson, van der Pol, ROBER and HIRES problems. Our method is compared with an adaptive Runge-Kutta method based on the Dormand-Prince pair, and a variable-step variable-order multistep solver based on numerical differentiation formulas, as implemented in the \texttt{ode45} and \texttt{ode15s} MATLAB functions, respectively. We show that the proposed scheme yields good approximation accuracy, thus outperforming \texttt{ode45} and \texttt{ode15s}, especially in the cases where steep gradients arise. Furthermore, the computational times of our approach are comparable with those of the two MATLAB solvers for practical purposes.
This paper analyzes a necessary and sufficient condition for the change-making problem to be solvable with a greedy algorithm. The change-making problem is to minimize the number of coins used to pay a given value in a specified currency system. This problem is NP-hard, and therefore the greedy algorithm does not always yield an optimal solution. Yet for almost all real currency systems, the greedy algorithm outputs an optimal solution. A currency system for which the greedy algorithm returns an optimal solution for any value of payment is called a canonical system. Canonical systems with at most five types of coins have been characterized in previous studies. In this paper, we give characterization of canonical systems with six types of coins, and we propose a partial generalization of characterization of canonical systems.
Probabilistic linear discriminant analysis (PLDA) has been widely used in open-set verification tasks, such as speaker verification. A potential issue of this model is that the training set often contains limited number of classes, which makes the estimation for the between-class variance unreliable. This unreliable estimation often leads to degraded generalization. In this paper, we present an MAP estimation for the between-class variance, by employing an Inverse-Wishart prior. A key problem is that with hierarchical models such as PLDA, the prior is placed on the variance of class means while the likelihood is based on class members, which makes the posterior inference intractable. We derive a simple MAP estimation for such a model, and test it in both PLDA scoring and length normalization. In both cases, the MAP-based estimation delivers interesting performance improvement.
We present a family of discretizations for the Variable Eddington Factor (VEF) equations that have high-order accuracy on curved meshes and efficient preconditioned iterative solvers. The VEF discretizations are combined with a high-order Discontinuous Galerkin transport discretization to form an effective high-order, linear transport method. The VEF discretizations are derived by extending the unified analysis of Discontinuous Galerkin methods for elliptic problems to the VEF equations. This framework is used to define analogs of the interior penalty, second method of Bassi and Rebay, minimal dissipation local Discontinuous Galerkin, and continuous finite element methods. The analysis of subspace correction preconditioners, which use a continuous operator to iteratively precondition the discontinuous discretization, is extended to the case of the non-symmetric VEF system. Numerical results demonstrate that the VEF discretizations have arbitrary-order accuracy on curved meshes, preserve the thick diffusion limit, and are effective on a proxy problem from thermal radiative transfer in both outer transport iterations and inner preconditioned linear solver iterations. In addition, a parallel weak scaling study of the interior penalty VEF discretization demonstrates the scalability of the method out to 1152 processors.
The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, maximizing variance and preservation of pairwise relative distances. The derivation of their asymptotic correlation and numerical experiments tell that a projection usually cannot satisfy both objectives. In a standard classification problem we determine projections on the input data that balance them and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning frameworks. We introduce new variational loss functions that enable integration of additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of the proposed loss functions increase the accuracy.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.