亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we develop a new method to approximate numerically the fractional Laplacian of functions defined on $\mathbb R$, as well as some more general singular integrals. After mapping $\mathbb R$ into a finite interval, we discretize the integral operator using a modified midpoint rule. The result of this procedure can be cast as a discrete convolution, which can be evaluated efficiently using the Fast-Fourier Transform (FFT). The method provides an efficient, second order accurate, approximation to the fractional Laplacian, without the need to truncate the domain. We first prove that the method gives a second-order approximation for the fractional Laplacian and other related singular integrals; then, we detail the implementation of the method using the fast convolution, and give numerical examples that support its efficacy and efficiency; finally, as an example of its applicability to an evolution problem, we employ the method for the discretization of the nonlocal part of the one-dimensional cubic fractional Schr\"odinger equation in the focusing case.

相關內容

The Laplacian-constrained Gaussian Markov Random Field (LGMRF) is a common multivariate statistical model for learning a weighted sparse dependency graph from given data. This graph learning problem is formulated as a maximum likelihood estimation (MLE) of the precision matrix, subject to Laplacian structural constraints, with a sparsity-inducing penalty term. This paper aims to solve this learning problem accurately and efficiently. First, since the commonly-used $\ell_1$-norm penalty is less appropriate in this setting, we employ the nonconvex minimax concave penalty (MCP), which promotes sparse solutions with lower estimation bias. Second, as opposed to most existing first-order methods for this problem, we base our method on the second-order proximal Newton approach to obtain an efficient solver for large-scale networks. This approach is considered the most efficient for the related graphical LASSO problem and allows for several algorithmic features we exploit, such as using Conjugate Gradients, preconditioning, and splitting to active/free sets. Numerical experiments demonstrate the advantages of the proposed method in terms of \emph{both} computational complexity and graph learning accuracy compared to existing methods.

We analyze the convergence of a nonlocal gradient descent method for minimizing a class of high-dimensional non-convex functions, where a directional Gaussian smoothing (DGS) is proposed to define the nonlocal gradient (also referred to as the DGS gradient). The method was first proposed in [42], in which multiple numerical experiments showed that replacing the traditional local gradient with the DGS gradient can help the optimizers escape local minima more easily and significantly improve their performance. However, a rigorous theory for the efficiency of the method on nonconvex landscape is lacking. In this work, we investigate the scenario where the objective function is composed of a convex function, perturbed by a oscillating noise. We provide a convergence theory under which the iterates exponentially converge to a tightened neighborhood of the solution, whose size is characterized by the noise wavelength. We also establish a correlation between the optimal values of the Gaussian smoothing radius and the noise wavelength, thus justify the advantage of using moderate or large smoothing radius with the method. Furthermore, if the noise level decays to zero when approaching global minimum, we prove that DGS-based optimization converges to the exact global minimum with linear rates, similarly to standard gradient-based method in optimizing convex functions. Several numerical experiments are provided to confirm our theory and illustrate the superiority of the approach over those based on the local gradient.

In recent years, many connections have been made between minimal codes, a classical object in coding theory, and other remarkable structures in finite geometry and combinatorics. One of the main problems related to minimal codes is to give lower and upper bounds on the length $m(k,q)$ of the shortest minimal codes of a given dimension $k$ over the finite field $\mathbb{F}_q$. It has been recently proved that $m(k, q) \geq (q+1)(k-1)$. In this note, we prove that $\liminf_{k \rightarrow \infty} \frac{m(k, q)}{k} \geq (q+ \varepsilon(q) )$, where $\varepsilon$ is an increasing function such that $1.52 <\varepsilon(2)\leq \varepsilon(q) \leq \sqrt{2} + \frac{1}{2}$. Hence, the previously known lower bound is not tight for large enough $k$. We then focus on the binary case and prove some structural results on minimal codes of length $3(k-1)$. As a byproduct, we are able to show that, if $k = 5 \pmod 8$ and for other small values of $k$, the bound is not tight.

In this work, we present an alternative formulation of the higher eigenvalue problem associated to the infinity Laplacian, which opens the door for numerical approximation of eigenfunctions. A rigorous analysis is performed to show the equivalence of the new formulation to the traditional one. Subsequently, we present consistent monotone schemes to approximate infinity ground states and higher eigenfunctions on grids. We prove that our method converges (up to a subsequence) to a viscosity solution of the eigenvalue problem, and perform numerical experiments which investigate theoretical conjectures and compute eigenfunctions on a variety of different domains.

Stability and optimal convergence analysis of a non-uniform implicit-explicit L1 finite element method (IMEX-L1-FEM) are studied for a class of time-fractional linear partial differential/integro-differential equations with non-self-adjoint elliptic part having variable (space-time) coefficients. Non-uniform IMEX-L1-FEM is based on a combination of an IMEX-L1 method on graded mesh in the temporal direction and a finite element method in the spatial direction. A discrete fractional Gr\"{o}nwall inequality is proposed, which enables us to derive optimal error estimates in $L^2$- and $H^1$-norms. Numerical experiments are presented to validate our theoretical findings.

Solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin and stochastic collocations methods. This work investigates a residual based adaptive algorithm used to approximate the solution of the stationary diffusion equation with lognormal coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence of the scheme for this class of unbounded coefficients has long been an open question. This paper fills this gap and in particular provides a convergence results for the adaptive solution of the lognormal stationary diffusion problem. A computational example supports the theoretical statement.

We introduce a high-order spline geometric approach for the initial boundary value problem for Maxwell's equations. The method is geometric in the sense that it discretizes in structure preserving fashion the two de Rham sequences of differential forms involved in the formulation of the continuous system. Both the Ampere--Maxwell and the Faraday equations are required to hold strongly, while to make the system solvable two discrete Hodge star operators are used. By exploiting the properties of the chosen spline spaces and concepts from exterior calculus, a non-standard explicit in time formulation is introduced, based on the solution of linear systems with matrices presenting Kronecker product structure, rather than mass matrices as in the standard literature. These matrices arise from the application of the exterior (wedge) product in the discrete setting, and they present Kronecker product structure independently of the geometry of the domain or the material parameters. The resulting scheme preserves the desirable energy conservation properties of the known approaches. The computational advantages of the newly proposed scheme are studied both through a complexity analysis and through numerical experiments in three dimensions.

In this paper, we propose a deep learning based numerical scheme for strongly coupled FBSDEs, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the mean squared error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDEs, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems, we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.

We propose in this paper efficient first/second-order time-stepping schemes for the evolutional Navier-Stokes-Nernst-Planck-Poisson equations. The proposed schemes are constructed using an auxiliary variable reformulation and sophisticated treatment of the terms coupling different equations. By introducing a dynamic equation for the auxiliary variable and reformulating the original equations into an equivalent system, we construct first- and second-order semi-implicit linearized schemes for the underlying problem. The main advantages of the proposed method are: (1) the schemes are unconditionally stable in the sense that a discrete energy keeps decay during the time stepping; (2) the concentration components of the discrete solution preserve positivity and mass conservation; (3) the delicate implementation shows that the proposed schemes can be very efficiently realized, with computational complexity close to a semi-implicit scheme. Some numerical examples are presented to demonstrate the accuracy and performance of the proposed method. As far as the best we know, this is the first second-order method which satisfies all the above properties for the Navier-Stokes-Nernst-Planck-Poisson equations.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司