亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When predictions are performative, the choice of which predictor to deploy influences the distribution of future observations. The overarching goal in learning under performativity is to find a predictor that has low \emph{performative risk}, that is, good performance on its induced distribution. One family of solutions for optimizing the performative risk, including bandits and other derivative-free methods, is agnostic to any structure in the performative feedback, leading to exceedingly slow convergence rates. A complementary family of solutions makes use of explicit \emph{models} for the feedback, such as best-response models in strategic classification, enabling significantly faster rates. However, these rates critically rely on the feedback model being well-specified. In this work we initiate a study of the use of possibly \emph{misspecified} models in performative prediction. We study a general protocol for making use of models, called \emph{plug-in performative optimization}, and prove bounds on its excess risk. We show that plug-in performative optimization can be far more efficient than model-agnostic strategies, as long as the misspecification is not too extreme. Altogether, our results support the hypothesis that models--even if misspecified--can indeed help with learning in performative settings.

相關內容

Coalition formation is concerned with the question of how to partition a set of agents into disjoint coalitions according to their preferences. Deviating from most of the previous work, we consider an online variant of the problem, where agents arrive in sequence and whenever an agent arrives, they have to be assigned to a coalition immediately and irrevocably. The scarce existing literature on online coalition formation has focused on the objective of maximizing social welfare, a demanding requirement, even in the offline setting. Instead, we seek to achieve stable coalition structures in an online setting, and focus on stability concepts based on deviations by single agents. We present a comprehensive picture in additively separable hedonic games, leading to dichotomies, where positive results are obtained by deterministic algorithms and negative results even hold for randomized algorithms.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

In approval-based committee (ABC) voting, the goal is to choose a subset of predefined size of the candidates based on the voters' approval preferences over the candidates. While this problem has attracted significant attention in recent years, the incentives for voters to participate in an election for a given ABC voting rule have been neglected so far. This paper is thus the first to explicitly study this property, typically called participation, for ABC voting rules. In particular, we show that all ABC scoring rules even satisfy group participation, whereas most sequential rules severely fail participation. We furthermore explore several escape routes to the impossibility for sequential ABC voting rules: we prove for many sequential rules that (i) they satisfy participation on laminar profiles, (ii) voters who approve none of the elected candidates cannot benefit by abstaining, and (iii) it is NP-hard for a voter to decide whether she benefits from abstaining.

Modern datasets in biology and chemistry are often characterized by the presence of a large number of variables and outlying samples due to measurement errors or rare biological and chemical profiles. To handle the characteristics of such datasets we introduce a method to learn a robust ensemble comprised of a small number of sparse, diverse and robust models, the first of its kind in the literature. The degree to which the models are sparse, diverse and resistant to data contamination is driven directly by the data based on a cross-validation criterion. We establish the finite-sample breakdown of the ensembles and the models that comprise them, and we develop a tailored computing algorithm to learn the ensembles by leveraging recent developments in l0 optimization. Our extensive numerical experiments on synthetic and artificially contaminated real datasets from bioinformatics and cheminformatics demonstrate the competitive advantage of our method over state-of-the-art sparse and robust methods. We also demonstrate the applicability of our proposal on a cardiac allograft vasculopathy dataset.

Deploying an algorithmically informed policy is a significant intervention in the structure of society. As is increasingly acknowledged, predictive algorithms have performative effects: using them can shift the distribution of social outcomes away from the one on which the algorithms were trained. Algorithmic fairness research is usually motivated by the worry that these performative effects will exacerbate the structural inequalities that gave rise to the training data. However, standard retrospective fairness methodologies are ill-suited to predict these effects. They impose static fairness constraints that hold after the predictive algorithm is trained, but before it is deployed and, therefore, before performative effects have had a chance to kick in. However, satisfying static fairness criteria after training is not sufficient to avoid exacerbating inequality after deployment. Addressing the fundamental worry that motivates algorithmic fairness requires explicitly comparing the change in relevant structural inequalities before and after deployment. We propose a prospective methodology for estimating this post-deployment change from pre-deployment data and knowledge about the algorithmic policy. That requires a strategy for distinguishing between, and accounting for, different kinds of performative effects. In this paper, we focus on the algorithmic effect on the causally downstream outcome variable. Throughout, we are guided by an application from public administration: the use of algorithms to (1) predict who among the recently unemployed will stay unemployed for the long term and (2) targeting them with labor market programs. We illustrate our proposal by showing how to predict whether such policies will exacerbate gender inequalities in the labor market.

Linear regression adjustment is commonly used to analyse randomised controlled experiments due to its efficiency and robustness against model misspecification. Current testing and interval estimation procedures leverage the asymptotic distribution of such estimators to provide Type-I error and coverage guarantees that hold only at a single sample size. Here, we develop the theory for the anytime-valid analogues of such procedures, enabling linear regression adjustment in the sequential analysis of randomised experiments. We first provide sequential $F$-tests and confidence sequences for the parametric linear model, which provide time-uniform Type-I error and coverage guarantees that hold for all sample sizes. We then relax all linear model parametric assumptions in randomised designs and provide nonparametric model-free sequential tests and confidence sequences for treatment effects. This formally allows experiments to be continuously monitored for significance, stopped early, and safeguards against statistical malpractices in data collection. A particular feature of our results is their simplicity. Our test statistics and confidence sequences all emit closed-form expressions, which are functions of statistics directly available from a standard linear regression table. We illustrate our methodology with the sequential analysis of software A/B experiments at Netflix, performing regression adjustment with pre-treatment outcomes.

Abuse in its various forms, including physical, psychological, verbal, sexual, financial, and cultural, has a negative impact on mental health. However, there are limited studies on applying natural language processing (NLP) in this field in Vietnam. Therefore, we aim to contribute by building a human-annotated Vietnamese dataset for detecting abusive content in Vietnamese narrative texts. We sourced these texts from VnExpress, Vietnam's popular online newspaper, where readers often share stories containing abusive content. Identifying and categorizing abusive spans in these texts posed significant challenges during dataset creation, but it also motivated our research. We experimented with lightweight baseline models by freezing PhoBERT and XLM-RoBERTa and using their hidden states in a BiLSTM to assess the complexity of the dataset. According to our experimental results, PhoBERT outperforms other models in both labeled and unlabeled abusive span detection tasks. These results indicate that it has the potential for future improvements.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司