亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In approval-based committee (ABC) voting, the goal is to choose a subset of predefined size of the candidates based on the voters' approval preferences over the candidates. While this problem has attracted significant attention in recent years, the incentives for voters to participate in an election for a given ABC voting rule have been neglected so far. This paper is thus the first to explicitly study this property, typically called participation, for ABC voting rules. In particular, we show that all ABC scoring rules even satisfy group participation, whereas most sequential rules severely fail participation. We furthermore explore several escape routes to the impossibility for sequential ABC voting rules: we prove for many sequential rules that (i) they satisfy participation on laminar profiles, (ii) voters who approve none of the elected candidates cannot benefit by abstaining, and (iii) it is NP-hard for a voter to decide whether she benefits from abstaining.

相關內容

Graph queries that combine pattern matching with relational operations, referred as PatRelQuery, are widely used in many real-world applications. It allows users to identify arbitrary patterns in a graph and further perform in-depth relational analysis on the results. To effectively support PatRelQuery, two key challenges need to be addressed: (1) how to optimize PatRelQuery in a unified framework, and (2) how to handle the arbitrary type constraints in patterns in PatRelQuery. In this paper, we present a graph-native query optimization framework named GOpt, to tackle these issues. GOpt is built on top of a unified intermediate representation (IR) that is capable of capturing both graph and relational operations, thereby streamlining the optimization of PatRelQuery. To handle the arbitrary type constraints, GOpt employs an automatic type inference approach to identify implicit type constraints. Additionally, GOpt introduces a graph-native optimizer, which encompasses an extensive collection of optimization rules along with cost-based techniques tailored for arbitrary patterns, to optimize PatRelQuery. Through comprehensive experiments, we demonstrate that GOpt can achieve significant query performance improvements, in both crafted benchmarks and real-world applications.

The integration of Federated Learning (FL) and Self-supervised Learning (SSL) offers a unique and synergetic combination to exploit the audio data for general-purpose audio understanding, without compromising user data privacy. However, rare efforts have been made to investigate the SSL models in the FL regime for general-purpose audio understanding, especially when the training data is generated by large-scale heterogeneous audio sources. In this paper, we evaluate the performance of feature-matching and predictive audio-SSL techniques when integrated into large-scale FL settings simulated with non-independently identically distributed (non-iid) data. We propose a novel Federated SSL (F-SSL) framework, dubbed FASSL, that enables learning intermediate feature representations from large-scale decentralized heterogeneous clients, holding unlabelled audio data. Our study has found that audio F-SSL approaches perform on par with the centralized audio-SSL approaches on the audio-retrieval task. Extensive experiments demonstrate the effectiveness and significance of FASSL as it assists in obtaining the optimal global model for state-of-the-art FL aggregation methods.

This paper studies an instance of zero-sum games in which one player (the leader) commits to its opponent (the follower) to choose its actions by sampling a given probability measure (strategy). The actions of the leader are observed by the follower as the output of an arbitrary channel. In response to that, the follower chooses its action based on its current information, that is, the leader's commitment and the corresponding noisy observation of its action. Within this context, the equilibrium of the game with noisy action observability is shown to always exist and the necessary conditions for its uniqueness are identified. Interestingly, the noisy observations have important impact on the cardinality of the follower's set of best responses. Under particular conditions, such a set of best responses is proved to be a singleton almost surely. The proposed model captures any channel noise with a density with respect to the Lebesgue measure. As an example, the case in which the channel is described by a Gaussian probability measure is investigated.

Due to the inability to receive signals from the Global Navigation Satellite System (GNSS) in extreme conditions, achieving accurate and robust navigation for Unmanned Aerial Vehicles (UAVs) is a challenging task. Recently emerged, vision-based navigation has been a promising and feasible alternative to GNSS-based navigation. However, existing vision-based techniques are inadequate in addressing flight deviation caused by environmental disturbances and inaccurate position predictions in practical settings. In this paper, we present a novel angle robustness navigation paradigm to deal with flight deviation in point-to-point navigation tasks. Additionally, we propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module to accurately predict direction angles for high-precision navigation. To evaluate the vision-based navigation methods, we collect a new dataset termed as UAV_AR368. Furthermore, we design the Simulation Flight Testing Instrument (SFTI) using Google Earth to simulate different flight environments, thereby reducing the expenses associated with real flight testing. Experiment results demonstrate that the proposed model outperforms the state-of-the-art by achieving improvements of 26.0% and 45.6% in the success rate of arrival under ideal and disturbed circumstances, respectively.

In nested Named entity recognition (NER), entities are nested with each other, and thus requiring more data annotations to address. This leads to the development of few-shot nested NER, where the prevalence of pretrained language models with in-context learning (ICL) offers promising solutions. In this work, we introduce an effective and innovative ICL framework for the setting of few-shot nested NER. We improve the ICL prompt by devising a novel example demonstration selection mechanism, EnDe retriever. In EnDe retriever, we employ contrastive learning to perform three types of representation learning, in terms of semantic similarity, boundary similarity, and label similarity, to generate high-quality demonstration examples. Extensive experiments over three nested NER and four flat NER datasets demonstrate the efficacy of our system.

Common crowdsourcing systems average estimates of a latent quantity of interest provided by many crowdworkers to produce a group estimate. We develop a new approach -- predict-each-worker -- that leverages self-supervised learning and a novel aggregation scheme. This approach adapts weights assigned to crowdworkers based on estimates they provided for previous quantities. When skills vary across crowdworkers or their estimates correlate, the weighted sum offers a more accurate group estimate than the average. Existing algorithms such as expectation maximization can, at least in principle, produce similarly accurate group estimates. However, their computational requirements become onerous when complex models, such as neural networks, are required to express relationships among crowdworkers. Predict-each-worker accommodates such complexity as well as many other practical challenges. We analyze the efficacy of predict-each-worker through theoretical and computational studies. Among other things, we establish asymptotic optimality as the number of engagements per crowdworker grows.

Because of their excellent asymptotic and finite-length performance, spatially-coupled (SC) codes are a class of low-density parity-check codes that is gaining increasing attention. Multi-dimensional (MD) SC codes are constructed by connecting copies of an SC code via relocations in order to mitigate various sources of non-uniformity and improve performance in many data storage and data transmission systems. As the number of degrees of freedom in the MD-SC code design increases, appropriately exploiting them becomes more difficult because of the complexity growth of the design process. In this paper, we propose a probabilistic framework for the MD-SC code design, which is based on the gradient-descent (GD) algorithm, to design better MD codes and address this challenge. In particular, we express the expected number of short cycles, which we seek to minimize, in the graph representation of the code in terms of entries of a probability-distribution matrix that characterizes the MD-SC code design. We then find a locally-optimal probability distribution, which serves as the starting point of a finite-length algorithmic optimizer that produces the final MD-SC code. We offer the theoretical analysis as well as the algorithms, and we present experimental results demonstrating that our MD codes, conveniently called GD-MD codes, have notably lower short cycle numbers compared with the available state-of-the-art. Moreover, our algorithms converge on solutions in few iterations, which confirms the complexity reduction as a result of limiting the search space via the locally-optimal GD-MD distributions.

Human communities have self-organizing properties that give rise to very specific natural grouping patterns, reflected in the Dunbar Number and its layered structure (a Dunbar Graph). Since work-groups are necessarily also social groups, we might expect the same principles to apply here as well. One factor likely to be important in limiting the size of groups is that conflicts typically escalate with the number of people involved. Here we analyse Wikipedia editing histories across a wide range of topics to show that there is an emergent coherence in the size of groups formed transiently to edit the content of subject texts, with two peaks averaging at around $N=8$ for the size corresponding to maximal contention, and at around $N=4$ as a regular team. These values are consistent with the observed sizes of conversational groups, as well as the hierarchical structuring of Dunbar graphs. We use the Promise Theory of trust to suggest a scaling law that may apply to all group distributions based on seeded attraction. In addition to providing further evidence that even natural communities of strangers are self-organising, the results have important implications for the governance of the Wikipedia commons and for the security of all online social platforms and associations.

Primal-dual methods have a natural application in Safe Reinforcement Learning (SRL), posed as a constrained policy optimization problem. In practice however, applying primal-dual methods to SRL is challenging, due to the inter-dependency of the learning rate (LR) and Lagrangian multipliers (dual variables) each time an embedded unconstrained RL problem is solved. In this paper, we propose, analyze and evaluate adaptive primal-dual (APD) methods for SRL, where two adaptive LRs are adjusted to the Lagrangian multipliers so as to optimize the policy in each iteration. We theoretically establish the convergence, optimality and feasibility of the APD algorithm. Finally, we conduct numerical evaluation of the practical APD algorithm with four well-known environments in Bullet-Safey-Gym employing two state-of-the-art SRL algorithms: PPO-Lagrangian and DDPG-Lagrangian. All experiments show that the practical APD algorithm outperforms (or achieves comparable performance) and attains more stable training than the constant LR cases. Additionally, we substantiate the robustness of selecting the two adaptive LRs by empirical evidence.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司