In this paper, we propose new Metropolis-Hastings and simulated annealing algorithms on finite state space via modifying the energy landscape. The core idea of landscape modification rests on introducing a parameter $c$, in which the landscape is modified once the algorithm is above this threshold parameter to encourage exploration, while the original landscape is utilized when the algorithm is below the threshold for exploitation purpose. We illustrate the power and benefits of landscape modification by investigating its effect on the classical Curie-Weiss model with Glauber dynamics and external magnetic field in the subcritical regime. This leads to a landscape-modified mean-field equation, and with appropriate choice of $c$ the free energy landscape can be transformed from a double-well into a single-well, while the location of the global minimum is preserved on the modified landscape. Consequently, running algorithms on the modified landscape can improve the convergence to the ground-state in the Curie-Weiss model. In the setting of simulated annealing, we demonstrate that landscape modification can yield improved or even subexponential mean tunneling time between global minima in the low-temperature regime by appropriate choice of $c$, and give convergence guarantee using an improved logarithmic cooling schedule with reduced critical height. We also discuss connections between landscape modification and other acceleration techniques such as Catoni's energy transformation algorithm, preconditioning, importance sampling and quantum annealing. The technique developed in this paper is not only limited to simulated annealing and is broadly applicable to any difference-based discrete optimization algorithm by a change of landscape.
This paper presents a novel approach to construct regularizing operators for severely ill-posed Fredholm integral equations of the first kind by introducing parametrized discretization. The optimal values of discretization and regularization parameters are computed simultaneously by solving a minimization problem formulated based on a regularization parameter search criterion. The effectiveness of the proposed approach is demonstrated through examples of noisy Laplace transform inversions and the deconvolution of nuclear magnetic resonance relaxation data.
We study the finite-time behaviour of the popular temporal difference (TD) learning algorithm when combined with tail-averaging. We derive finite time bounds on the parameter error of the tail-averaged TD iterate under a step-size choice that does not require information about the eigenvalues of the matrix underlying the projected TD fixed point. Our analysis shows that tail-averaged TD converges at the optimal $O\left(1/t\right)$ rate, both in expectation and with high probability. In addition, our bounds exhibit a sharper rate of decay for the initial error (bias), which is an improvement over averaging all iterates. We also propose and analyse a variant of TD that incorporates regularisation. From analysis, we conclude that the regularised version of TD is useful for problems with ill-conditioned features.
In this paper, we propose a Riemannian Acceleration with Preconditioning (RAP) for symmetric eigenvalue problems, which is one of the most important geodesically convex optimization problem on Riemannian manifold, and obtain the acceleration. Firstly, the preconditioning for symmetric eigenvalue problems from the Riemannian manifold viewpoint is discussed. In order to obtain the local geodesic convexity, we develop the leading angle to measure the quality of the preconditioner for symmetric eigenvalue problems. A new Riemannian acceleration, called Locally Optimal Riemannian Accelerated Gradient (LORAG) method, is proposed to overcome the local geodesic convexity for symmetric eigenvalue problems. With similar techniques for RAGD and analysis of local convex optimization in Euclidean space, we analyze the convergence of LORAG. Incorporating the local geodesic convexity of symmetric eigenvalue problems under preconditioning with the LORAG, we propose the Riemannian Acceleration with Preconditioning (RAP) and prove its acceleration. Additionally, when the Schwarz preconditioner, especially the overlapping or non-overlapping domain decomposition method, is applied for elliptic eigenvalue problems, we also obtain the rate of convergence as $1-C\kappa^{-1/2}$, where $C$ is a constant independent of the mesh sizes and the eigenvalue gap, $\kappa=\kappa_{\nu}\lambda_{2}/(\lambda_{2}-\lambda_{1})$, $\kappa_{\nu}$ is the parameter from the stable decomposition, $\lambda_{1}$ and $\lambda_{2}$ are the smallest two eigenvalues of the elliptic operator. Numerical results show the power of Riemannian acceleration and preconditioning.
In this paper, we present a discontinuity and cusp capturing physics-informed neural network (PINN) to solve Stokes equations with a piecewise-constant viscosity and singular force along an interface. We first reformulate the governing equations in each fluid domain separately and replace the singular force effect with the traction balance equation between solutions in two sides along the interface. Since the pressure is discontinuous and the velocity has discontinuous derivatives across the interface, we hereby use a network consisting of two fully-connected sub-networks that approximate the pressure and velocity, respectively. The two sub-networks share the same primary coordinate input arguments but with different augmented feature inputs. These two augmented inputs provide the interface information, so we assume that a level set function is given and its zero level set indicates the position of the interface. The pressure sub-network uses an indicator function as an augmented input to capture the function discontinuity, while the velocity sub-network uses a cusp-enforced level set function to capture the derivative discontinuities via the traction balance equation. We perform a series of numerical experiments to solve two- and three-dimensional Stokes interface problems and perform an accuracy comparison with the augmented immersed interface methods in literature. Our results indicate that even a shallow network with a moderate number of neurons and sufficient training data points can achieve prediction accuracy comparable to that of immersed interface methods.
This paper introduces a prognostic method called FLASH that addresses the problem of joint modelling of longitudinal data and censored durations when a large number of both longitudinal and time-independent features are available. In the literature, standard joint models are either of the shared random effect or joint latent class type. Combining ideas from both worlds and using appropriate regularisation techniques, we define a new model with the ability to automatically identify significant prognostic longitudinal features in a high-dimensional context, which is of increasing importance in many areas such as personalised medicine or churn prediction. We develop an estimation methodology based on the EM algorithm and provide an efficient implementation. The statistical performance of the method is demonstrated both in extensive Monte Carlo simulation studies and on publicly available real-world datasets. Our method significantly outperforms the state-of-the-art joint models in predicting the latent class membership probability in terms of the C-index in a so-called ``real-time'' prediction setting, with a computational speed that is orders of magnitude faster than competing methods. In addition, our model automatically identifies significant features that are relevant from a practical perspective, making it interpretable.
In this paper we establish limit theorems for power variations of stochastic processes controlled by fractional Brownian motions with Hurst parameter $H\leq 1/2$. We show that the power variations of such processes can be decomposed into the mix of several weighted random sums plus some remainder terms, and the convergences of power variations are dominated by different combinations of those weighted sums depending on whether $H<1/4$, $H=1/4$, or $H>1/4$. We show that when $H\geq 1/4$ the centered power variation converges stably at the rate $n^{-1/2}$, and when $H<1/4$ it converges in probability at the rate $n^{-2H}$. We determine the limit of the mixed weighted sum based on a rough path approach developed in \cite{LT20}.
The generation of curves and surfaces from given data is a well-known problem in Computer-Aided Design that can be approached using subdivision schemes. They are powerful tools that allow obtaining new data from the initial one by means of simple calculations. However, in some applications, the collected data are given with noise and most of schemes are not adequate to process them. In this paper, we present some new families of binary univariate linear subdivision schemes using weighted local polynomial regression. We study their properties, such as convergence, monotonicity, polynomial reproduction and approximation and denoising capabilities. For the convergence study, we develop some new theoretical results. Finally, some examples are presented to confirm the proven properties.
A novel overlapping domain decomposition splitting algorithm based on a Crank-Nisolson method is developed for the stochastic nonlinear Schroedinger equation driven by a multiplicative noise with non-periodic boundary conditions. The proposed algorithm can significantly reduce the computational cost while maintaining the similar conservation laws. Numerical experiments are dedicated to illustrating the capability of the algorithm for different spatial dimensions, as well as the various initial conditions. In particular, we compare the performance of the overlapping domain decomposition splitting algorithm with the stochastic multi-symplectic method in [S. Jiang, L. Wang and J. Hong, Commun. Comput. Phys., 2013] and the finite difference splitting scheme in [J. Cui, J. Hong, Z. Liu and W. Zhou, J. Differ. Equ., 2019]. We observe that our proposed algorithm has excellent computational efficiency and is highly competitive. It provides a useful tool for solving stochastic partial differential equations.
Spatially misaligned data can be fused by using a Bayesian melding model that assumes that underlying all observations there is a spatially continuous Gaussian random field process. This model can be used, for example, to predict air pollution levels by combining point data from monitoring stations and areal data from satellite imagery. However, if the data presents preferential sampling, that is, if the observed point locations are not independent of the underlying spatial process, the inference obtained from models that ignore such a dependence structure might not be valid. In this paper, we present a Bayesian spatial model for the fusion of point and areal data that takes into account preferential sampling. The model combines the Bayesian melding specification and a model for the stochastically dependent sampling and underlying spatial processes. Fast Bayesian inference is performed using the integrated nested Laplace approximation (INLA) and the stochastic partial differential equation (SPDE) approaches. The performance of the model is assessed using simulated data in a range of scenarios and sampling strategies that can appear in real settings. The model is also applied to predict air pollution in the USA.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. Firstly, we analyze the symplectic conditions for two kinds of exponential integrators and obtain the symplectic method. In order to effectively solve highly oscillatory problems, we try to design the highly accurate implicit ERK integrators. By comparing the Taylor series expansion of numerical solution with exact solution, it can be verified that the order conditions of two new kinds of exponential methods are identical to classical Runge-Kutta (RK) methods, which implies that using the coefficients of RK methods, some highly accurate numerical methods are directly formulated. Furthermore, we also investigate the linear stability properties for these exponential methods. Finally, numerical results not only display the long time energy preservation of the symplectic method, but also present the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.