In this paper, we propose a Riemannian Acceleration with Preconditioning (RAP) for symmetric eigenvalue problems, which is one of the most important geodesically convex optimization problem on Riemannian manifold, and obtain the acceleration. Firstly, the preconditioning for symmetric eigenvalue problems from the Riemannian manifold viewpoint is discussed. In order to obtain the local geodesic convexity, we develop the leading angle to measure the quality of the preconditioner for symmetric eigenvalue problems. A new Riemannian acceleration, called Locally Optimal Riemannian Accelerated Gradient (LORAG) method, is proposed to overcome the local geodesic convexity for symmetric eigenvalue problems. With similar techniques for RAGD and analysis of local convex optimization in Euclidean space, we analyze the convergence of LORAG. Incorporating the local geodesic convexity of symmetric eigenvalue problems under preconditioning with the LORAG, we propose the Riemannian Acceleration with Preconditioning (RAP) and prove its acceleration. Additionally, when the Schwarz preconditioner, especially the overlapping or non-overlapping domain decomposition method, is applied for elliptic eigenvalue problems, we also obtain the rate of convergence as $1-C\kappa^{-1/2}$, where $C$ is a constant independent of the mesh sizes and the eigenvalue gap, $\kappa=\kappa_{\nu}\lambda_{2}/(\lambda_{2}-\lambda_{1})$, $\kappa_{\nu}$ is the parameter from the stable decomposition, $\lambda_{1}$ and $\lambda_{2}$ are the smallest two eigenvalues of the elliptic operator. Numerical results show the power of Riemannian acceleration and preconditioning.
In this paper we consider PIDEs with gradient-independent Lipschitz continuous nonlinearities and prove that deep neural networks with ReLU activation function can approximate solutions of such semilinear PIDEs without curse of dimensionality in the sense that the required number of parameters in the deep neural networks increases at most polynomially in both the dimension $ d $ of the corresponding PIDE and the reciprocal of the prescribed accuracy $\epsilon $.
In this paper, we propose the novel p-branch-and-bound method for solving two-stage stochastic programming problems whose deterministic equivalents are represented by non-convex mixed-integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p-branch-and-bound method can be arbitrarily adjusted by altering the value of the precision factor p. The proposed method combines two key techniques. The first one, named p-Lagrangian decomposition, generates a mixed-integer relaxation of a dual problem with a separable structure for a primal non-convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non-anticipativity conditions are met in the optimal solution. The p-branch-and-bound method's efficiency has been tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi. This paper also presents a comparative analysis of the p-branch-and-bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank-Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank-Wolfe method as an inner loop in the classic progressive hedging.
Quantum computing promises transformational gains for solving some problems, but little to none for others. For anyone hoping to use quantum computers now or in the future, it is important to know which problems will benefit. In this paper, we introduce a framework for answering this question both intuitively and quantitatively. The underlying structure of the framework is a race between quantum and classical computers, where their relative strengths determine when each wins. While classical computers operate faster, quantum computers can sometimes run more efficient algorithms. Whether the speed advantage or the algorithmic advantage dominates determines whether a problem will benefit from quantum computing or not. Our analysis reveals that many problems, particularly those of small to moderate size that can be important for typical businesses, will not benefit from quantum computing. Conversely, larger problems or those with particularly big algorithmic gains will benefit from near-term quantum computing. Since very large algorithmic gains are rare in practice and theorized to be rare even in principle, our analysis suggests that the benefits from quantum computing will flow either to users of these rare cases, or practitioners processing very large data.
This work concerns the enrichment of Discontinuous Galerkin (DG) bases, so that the resulting scheme provides a much better approximation of steady solutions to hyperbolic systems of balance laws. The basis enrichment leverages a prior -- an approximation of the steady solution -- which we propose to compute using a Physics-Informed Neural Network (PINN). To that end, after presenting the classical DG scheme, we show how to enrich its basis with a prior. Convergence results and error estimates follow, in which we prove that the basis with prior does not change the order of convergence, and that the error constant is improved. To construct the prior, we elect to use parametric PINNs, which we introduce, as well as the algorithms to construct a prior from PINNs. We finally perform several validation experiments on four different hyperbolic balance laws to highlight the properties of the scheme. Namely, we show that the DG scheme with prior is much more accurate on steady solutions than the DG scheme without prior, while retaining the same approximation quality on unsteady solutions.
In this paper, we obtain sufficient and necessary conditions for quasi-cyclic codes with index even to be symplectic self-orthogonal. Then, we propose a method for constructing symplectic self-orthogonal quasi-cyclic codes, which allows arbitrary polynomials that coprime $x^{n}-1$ to construct symplectic self-orthogonal codes. Moreover, by decomposing the space of quasi-cyclic codes, we provide lower and upper bounds on the minimum symplectic distances of a class of 1-generator quasi-cyclic codes and their symplectic dual codes. Finally, we construct many binary symplectic self-orthogonal codes with excellent parameters, corresponding to 117 record-breaking quantum codes, improving Grassl's table (Bounds on the Minimum Distance of Quantum Codes. //www.codetables.de).
In this work, we introduce Regularity Structures B-series which are used for describing solutions of singular stochastic partial differential equations (SPDEs). We define composition and substitutions of these B-series and as in the context of B-series for ordinary differential equations, these operations can rewritten via products and Hopf algebras which have been used for building up renormalised models. These models provide a suitable topology for solving singular SPDEs. This new construction sheds a new light on these products and open interesting perspectives for the study of singular SPDEs in connection with B-series.
In this paper, we consider the simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted THz communications with three-side beam split. Except for the beam split at the base station (BS), we analyze the double-side beam split at the STAR-RIS for the first time. To relieve the double-side beam split effect, we propose a time delayer (TD)-based fully-connected structure at the STAR-RIS. As a further advance, a low-hardware complexity and low-power consumption sub-connected structure is developed, where multiple STAR-RIS elements share one TD. Meanwhile, considering the practical scenario, we investigate a multi-STAR-RIS and multi-user communication system, and a sum rate maximization problem is formulated by jointly optimizing the hybrid analog/digital beamforming, time delays at the BS as well as the double-layer phase-shift coefficients, time delays and amplitude coefficients at the STAR-RISs. Based on this, we first allocate users for each STAR-RIS, and then derive the analog beamforming, time delays at the BS, and the double-layer phase-shift coefficients, time delays at each STAR-RIS. Next, we develop an alternative optimization algorithm to calculate the digital beamforming at the BS and amplitude coefficients at the STAR-RISs. Finally, the numerical results verify the effectiveness of the proposed schemes.
In this paper, we present a novel numerical scheme for simulating deformable and extensible capsules suspended in a Stokesian fluid. The main feature of our scheme is a partition-of-unity (POU) based representation of the surface that enables asymptotically faster computations compared to spherical-harmonics based representations. We use a boundary integral equation formulation to represent and discretize hydrodynamic interactions. The boundary integrals are weakly singular. We use the quadrature scheme based on the regularized Stokes kernels. We also use partition-of unity based finite differences that are required for the computational of interfacial forces. Given an N-point surface discretization, our numerical scheme has fourth-order accuracy and O(N) asymptotic complexity, which is an improvement over the O(N^2 log(N)) complexity of a spherical harmonics based spectral scheme that uses product-rule quadratures. We use GPU acceleration and demonstrate the ability of our code to simulate the complex shapes with high resolution. We study capsules that resist shear and tension and their dynamics in shear and Poiseuille flows. We demonstrate the convergence of the scheme and compare with the state of the art.
In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.
In two and three dimensions, we design and analyze a posteriori error estimators for the mixed Stokes eigenvalue problem. The unknowns on this mixed formulation are the pseudotress, velocity and pressure. With a lowest order mixed finite element scheme, together with a postprocressing technique, we prove that the proposed estimator is reliable and efficient. We illustrate the results with several numerical tests in two and three dimensions in order to assess the performance of the estimator.