亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sim-to-Real refers to the process of transferring policies learned in simulation to the real world, which is crucial for achieving practical robotics applications. However, recent Sim2real methods either rely on a large amount of augmented data or large learning models, which is inefficient for specific tasks. In recent years, radiance field-based reconstruction methods, especially the emergence of 3D Gaussian Splatting, making it possible to reproduce realistic real-world scenarios. To this end, we propose a novel real-to-sim-to-real reinforcement learning framework, RL-GSBridge, which introduces a mesh-based 3D Gaussian Splatting method to realize zero-shot sim-to-real transfer for vision-based deep reinforcement learning. We improve the mesh-based 3D GS modeling method by using soft binding constraints, enhancing the rendering quality of mesh models. We then employ a GS editing approach to synchronize rendering with the physics simulator, reflecting the interactions of the physical robot more accurately. Through a series of sim-to-real robotic arm experiments, including grasping and pick-and-place tasks, we demonstrate that RL-GSBridge maintains a satisfactory success rate in real-world task completion during sim-to-real transfer. Furthermore, a series of rendering metrics and visualization results indicate that our proposed mesh-based 3D Gaussian reduces artifacts in unstructured objects, demonstrating more realistic rendering performance.

相關內容

Model-X knockoff has garnered significant attention among various feature selection methods due to its guarantees for controlling the false discovery rate (FDR). Since its introduction in parametric design, knockoff techniques have evolved to handle arbitrary data distributions using deep learning-based generative models. However, we have observed limitations in the current implementations of the deep Model-X knockoff framework. Notably, the "swap property" that knockoffs require often faces challenges at the sample level, resulting in diminished selection power. To address these issues, we develop "Deep Dependency Regularized Knockoff (DeepDRK)," a distribution-free deep learning method that effectively balances FDR and power. In DeepDRK, we introduce a novel formulation of the knockoff model as a learning problem under multi-source adversarial attacks. By employing an innovative perturbation technique, we achieve lower FDR and higher power. Our model outperforms existing benchmarks across synthetic, semi-synthetic, and real-world datasets, particularly when sample sizes are small and data distributions are non-Gaussian.

The emergence of large language models (LLMs) relies heavily on distributed training strategies, among which pipeline parallelism plays a crucial role. As LLMs' training sequence length extends to 32k or even 128k, the current pipeline parallel methods face severe bottlenecks, including high memory footprints and substantial pipeline bubbles, greatly hindering model scalability and training throughput. To enhance memory efficiency and training throughput, in this work, we introduce an efficient sequence-level one-forward-one-backward (1F1B) pipeline scheduling method tailored for training LLMs on long sequences named Seq1F1B. Seq1F1B decomposes batch-level schedulable units into finer sequence-level units, reducing bubble size and memory footprint. Considering that Seq1F1B may produce slight extra bubbles if sequences are split evenly, we design a computation-wise strategy to partition input sequences and mitigate this side effect. Compared to competitive pipeline baseline methods such as Megatron 1F1B pipeline parallelism, our method achieves higher training throughput with less memory footprint. Notably, Seq1F1B efficiently trains a LLM with 30B parameters on sequences up to 64k using 64 NVIDIA A100 GPUs without recomputation strategies, a feat unachievable with existing methods. Our source code is based on Megatron-LM, and now is avaiable at: //github.com/MayDomine/Seq1F1B.git.

Training robot policies in simulation is becoming increasingly popular; nevertheless, a precise, reliable, and easy-to-use tactile simulator for contact-rich manipulation tasks is still missing. To close this gap, we develop TacEx -- a modular tactile simulation framework. We embed a state-of-the-art soft-body simulator for contacts named GIPC and vision-based tactile simulators Taxim and FOTS into Isaac Sim to achieve robust and plausible simulation of the visuotactile sensor GelSight Mini. We implement several Isaac Lab environments for Reinforcement Learning (RL) leveraging our TacEx simulation, including object pushing, lifting, and pole balancing. We validate that the simulation is stable and that the high-dimensional observations, such as the gel deformation and the RGB images from the GelSight camera, can be used for training. The code, videos, and additional results will be released online //sites.google.com/view/tacex.

Code-mixing, the integration of lexical and grammatical elements from multiple languages within a single sentence, is a widespread linguistic phenomenon, particularly prevalent in multilingual societies. In India, social media users frequently engage in code-mixed conversations using the Roman script, especially among migrant communities who form online groups to share relevant local information. This paper focuses on the challenges of extracting relevant information from code-mixed conversations, specifically within Roman transliterated Bengali mixed with English. This study presents a novel approach to address these challenges by developing a mechanism to automatically identify the most relevant answers from code-mixed conversations. We have experimented with a dataset comprising of queries and documents from Facebook, and Query Relevance files (QRels) to aid in this task. Our results demonstrate the effectiveness of our approach in extracting pertinent information from complex, code-mixed digital conversations, contributing to the broader field of natural language processing in multilingual and informal text environments. We use GPT-3.5 Turbo via prompting alongwith using the sequential nature of relevant documents to frame a mathematical model which helps to detect relevant documents corresponding to a query.

3D semantic occupancy prediction is crucial for finely representing the surrounding environment, which is essential for ensuring the safety in autonomous driving. Existing fusion-based occupancy methods typically involve performing a 2D-to-3D view transformation on image features, followed by computationally intensive 3D operations to fuse these with LiDAR features, leading to high computational costs and reduced accuracy. Moreover, current research on occupancy prediction predominantly focuses on designing specific network architectures, often tailored to particular models, with limited attention given to the more fundamental aspect of semantic feature learning. This gap hinders the development of more transferable methods that could enhance the performance of various occupancy models. To address these challenges, we propose OccLoff, a framework that Learns to Optimize Feature Fusion for 3D occupancy prediction. Specifically, we introduce a sparse fusion encoder with entropy masks that directly fuses 3D and 2D features, improving model accuracy while reducing computational overhead. Additionally, we propose a transferable proxy-based loss function and an adaptive hard sample weighting algorithm, which enhance the performance of several state-of-the-art methods. Extensive evaluations on the nuScenes and SemanticKITTI benchmarks demonstrate the superiority of our framework, and ablation studies confirm the effectiveness of each proposed module.

Surgical instrument segmentation (SIS) is pivotal for robotic-assisted minimally invasive surgery, assisting surgeons by identifying surgical instruments in endoscopic video frames. Recent unsupervised surgical instrument segmentation (USIS) methods primarily rely on pseudo-labels derived from low-level features such as color and optical flow, but these methods show limited effectiveness and generalizability in complex and unseen endoscopic scenarios. In this work, we propose a label-free unsupervised model featuring a novel module named Multi-View Normalized Cutter (m-NCutter). Different from previous USIS works, our model is trained using a graph-cutting loss function that leverages patch affinities for supervision, eliminating the need for pseudo-labels. The framework adaptively determines which affinities from which levels should be prioritized. Therefore, the low- and high-level features and their affinities are effectively integrated to train a label-free unsupervised model, showing superior effectiveness and generalization ability. We conduct comprehensive experiments across multiple SIS datasets to validate our approach's state-of-the-art (SOTA) performance, robustness, and exceptional potential as a pre-trained model. Our code is released at //github.com/MingyuShengSMY/AMNCutter.

Graph similarity computation (GSC) aims to quantify the similarity score between two graphs. Although recent GSC methods based on graph neural networks (GNNs) take advantage of intra-graph structures in message passing, few of them fully utilize the structures presented by edges to boost the representation of their connected nodes. Moreover, previous cross-graph node embedding matching lacks the perception of the overall structure of the graph pair, due to the fact that the node representations from GNNs are confined to the intra-graph structure, causing the unreasonable similarity score. Intuitively, the cross-graph structure represented in the assignment graph is helpful to rectify the inappropriate matching. Therefore, we propose a structure-enhanced graph matching network (SEGMN). Equipped with a dual embedding learning module and a structure perception matching module, SEGMN achieves structure enhancement in both embedding learning and cross-graph matching. The dual embedding learning module incorporates adjacent edge representation into each node to achieve a structure-enhanced representation. The structure perception matching module achieves cross-graph structure enhancement through assignment graph convolution. The similarity score of each cross-graph node pair can be rectified by aggregating messages from structurally relevant node pairs. Experimental results on benchmark datasets demonstrate that SEGMN outperforms the state-of-the-art GSC methods in the GED regression task, and the structure perception matching module is plug-and-play, which can further improve the performance of the baselines by up to 25%.

Large Language Models (LLMs) have been successful in mathematical reasoning tasks such as formal theorem proving when integrated with interactive proof assistants like Lean. Existing approaches involve training or fine-tuning an LLM on a specific dataset to perform well on particular domains, such as undergraduate-level mathematics. These methods struggle with generalizability to advanced mathematics. A fundamental limitation is that these approaches operate on static domains, failing to capture how mathematicians often work across multiple domains and projects simultaneously or cyclically. We present LeanAgent, a novel lifelong learning framework for theorem proving that continuously generalizes to and improves on ever-expanding mathematical knowledge without forgetting previously learned knowledge. LeanAgent introduces several key innovations, including a curriculum learning strategy that optimizes the learning trajectory in terms of mathematical difficulty, a dynamic database for efficient management of evolving mathematical knowledge, and progressive training to balance stability and plasticity. LeanAgent successfully proves 162 theorems previously unproved by humans across 23 diverse Lean repositories, many from advanced mathematics. It performs significantly better than the static LLM baseline, proving challenging theorems in domains like abstract algebra and algebraic topology while showcasing a clear progression of learning from basic concepts to advanced topics. In addition, we analyze LeanAgent's superior performance on key lifelong learning metrics. LeanAgent achieves exceptional scores in stability and backward transfer, where learning new tasks improves performance on previously learned tasks. This emphasizes LeanAgent's continuous generalizability and improvement, explaining its superior theorem-proving performance.

Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

北京阿比特科技有限公司