亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The image source method (ISM) is often used to simulate room acoustics due to its ease of use and computational efficiency. The standard ISM is limited to simulations of room impulse responses between point sources and omnidirectional receivers. In this work, the ISM is extended using spherical harmonic directivity coefficients to include acoustic diffraction effects due to source and receiver transducers mounted on physical devices, which are typically encountered in practical situations. The proposed method is verified using finite element simulations of various loudspeaker and microphone configurations in a rectangular room. It is shown that the accuracy of the proposed method is related to the sizes, shapes, number, and positions of the devices inside a room. A simplified version of the proposed method, which can significantly reduce computational effort, is also presented. The proposed method and its simplified version can simulate room transfer functions more accurately than currently available image source methods and can aid the development and evaluation of speech and acoustic signal processing algorithms, including speech enhancement, acoustic scene analysis, and acoustic parameter estimation.

相關內容

Domain-specific terminology extraction is an important task in text analysis. A term in a corpus is said to be "bursty" when its occurrences are concentrated in few out of many documents. Being content rich, bursty terms are highly suited for subject matter characterization, and serve as natural candidates for identifying with technical terminology. Multiple measures of term burstiness have been proposed in the literature. However, the statistical significance testing paradigm has remained underexplored in text analysis, including in relation to term burstiness. To test these waters, we propose as our main contribution a multinomial language model-based exact test of statistical significance for term burstiness. Due to its prohibitive computational cost, we advance a heuristic formula designed to serve as a proxy for test P-values. As a complementary theoretical contribution, we derive a previously unreported relationship connecting the inverse document frequency and inverse collection frequency (two foundational quantities in text analysis) under the multinomial language model. The relation is used in the evaluation of our heuristic. Using the GENIA Term corpus benchmark, we compare our approach against established methods, demonstrating our heuristic's potential in identifying domain-specific technical terms. We hope this demonstration of statistical significance testing in text analysis serves as a springboard for future research.

We show that the use of large language models (LLMs) is prevalent among crowd workers, and that targeted mitigation strategies can significantly reduce, but not eliminate, LLM use. On a text summarization task where workers were not directed in any way regarding their LLM use, the estimated prevalence of LLM use was around 30%, but was reduced by about half by asking workers to not use LLMs and by raising the cost of using them, e.g., by disabling copy-pasting. Secondary analyses give further insight into LLM use and its prevention: LLM use yields high-quality but homogeneous responses, which may harm research concerned with human (rather than model) behavior and degrade future models trained with crowdsourced data. At the same time, preventing LLM use may be at odds with obtaining high-quality responses; e.g., when requesting workers not to use LLMs, summaries contained fewer keywords carrying essential information. Our estimates will likely change as LLMs increase in popularity or capabilities, and as norms around their usage change. Yet, understanding the co-evolution of LLM-based tools and users is key to maintaining the validity of research done using crowdsourcing, and we provide a critical baseline before widespread adoption ensues.

Stochastic sampling techniques are ubiquitous in real-time rendering, where performance constraints force the use of low sample counts, leading to noisy intermediate results. To remove this noise, the post-processing step of temporal and spatial denoising is an integral part of the real-time graphics pipeline. The main insight presented in this paper is that we can optimize the samples used in stochastic sampling such that the post-processing error is minimized. The core of our method is an analytical loss function which measures post-filtering error for a class of integrands - multidimensional Heaviside functions. These integrands are an approximation of the discontinuous functions commonly found in rendering. Our analysis applies to arbitrary spatial and spatiotemporal filters, scalar and vector sample values, and uniform and non-uniform probability distributions. We show that the spectrum of Monte Carlo noise resulting from our sampling method is adapted to the shape of the filter, resulting in less noisy final images. We demonstrate improvements over state-of-the-art sampling methods in three representative rendering tasks: ambient occlusion, volumetric ray-marching, and color image dithering. Common use noise textures, and noise generation code is available at //github.com/electronicarts/fastnoise.

Highly oscillatory differential equations present significant challenges in numerical treatments. The Modulated Fourier Expansion (MFE), used as an ansatz, is a commonly employed tool as a numerical approximation method. In this article, the Modulated Fourier Expansion is analytically derived for a linear partial differential equation with a multifrequency highly oscillatory potential. The solution of the equation is expressed as a convergent Neumann series within the appropriate Sobolev space. The proposed approach enables, firstly, to derive a general formula for the error associated with the approximation of the solution by MFE, and secondly, to determine the coefficients for this expansion -- without the need to solve numerically the system of differential equations to find the coefficients of MFE. Numerical experiments illustrate the theoretical investigations.

Internet traffic is dramatically increasing with the development of network technologies and video streaming traffic accounts for large amount within the total traffic, which reveals the importance to guarantee the quality of content delivery service. Based on the network conditions, adaptive bitrate (ABR) control is utilized as a common technique which can choose the proper bitrate to ensure the video streaming quality. In this paper, new bitrate control method, QuDASH is proposed by taking advantage of the emerging quantum technology. In QuDASH, the adaptive control model is developed using the quadratic unconstrained binary optimization (QUBO), which aims at increasing the average bitrate and decreasing the video rebuffering events to maximize the user quality of experience (QoE). In order to formulate the video control model, first the QUBO terms of different factors are defined regarding video quality, bitrate change, and buffer condition. Then, all the individual QUBO terms are merged to generate an objective function. By minimizing the QUBO objective function, the bitrate choice is determined from the solution. The control model is solved by Digital Annealer, which is a quantum-inspired computing technology. The evaluation of the proposed method is carried out by simulation with the throughput traces obtained in real world under different scenarios and the comparison with other methods is conducted. Experiment results demonstrated that the proposed QuDASH method has better performance in terms of QoE compared with other advanced ABR methods. In 68.2% of the examined cases, QuDASH achieves the highest QoE results, which shows the superiority of the QuDASH over conventional methods.

We introduce an efficient first-order primal-dual method for the solution of nonsmooth PDE-constrained optimization problems. We achieve this efficiency through not solving the PDE or its linearisation on each iteration of the optimization method. Instead, we run the method interwoven with a simple conventional linear system solver (Jacobi, Gauss-Seidel, conjugate gradients), always taking only one step of the linear system solver for each step of the optimization method. The control parameter is updated on each iteration as determined by the optimization method. We prove linear convergence under a second-order growth condition, and numerically demonstrate the performance on a variety of PDEs related to inverse problems involving boundary measurements.

Neural oscillations are considered to be brain-specific signatures of information processing and communication in the brain. They also reflect pathological brain activity in neurological disorders, thus offering a basis for diagnoses and forecasting. Epilepsy is one of the most common neurological disorders, characterized by abnormal synchronization and desynchronization of the oscillations in the brain. About one third of epilepsy cases are pharmacoresistant, and as such emphasize the need for novel therapy approaches, where brain stimulation appears to be a promising therapeutic option. The development of brain stimulation paradigms, however, is often based on generalized assumptions about brain dynamics, although it is known that significant differences occur between patients and brain states. We developed a framework to extract individualized predictive models of epileptic network dynamics directly from EEG data. The models are based on the dominant coherent oscillations and their dynamical coupling, thus combining an established interpretation of dynamics through neural oscillations, with accurate patient-specific features. We show that it is possible to build a direct correspondence between the models of brain-network dynamics under periodic driving, and the mechanism of neural entrainment via periodic stimulation. When our framework is applied to EEG recordings of patients in status epilepticus (a brain state of perpetual seizure activity), it yields a model-driven predictive analysis of the therapeutic performance of periodic brain stimulation. This suggests that periodic brain stimulation can drive pathological states of epileptic network dynamics towards a healthy functional brain state.

Domain shift poses a significant challenge in cross-domain spoken language recognition (SLR) by reducing its effectiveness. Unsupervised domain adaptation (UDA) algorithms have been explored to address domain shifts in SLR without relying on class labels in the target domain. One successful UDA approach focuses on learning domain-invariant representations to align feature distributions between domains. However, disregarding the class structure during the learning process of domain-invariant representations can result in over-alignment, negatively impacting the classification task. To overcome this limitation, we propose an optimal transport (OT)-based UDA algorithm for a cross-domain SLR, leveraging the distribution geometry structure-aware property of OT. An OT-based discrepancy measure on a joint distribution over feature and label information is considered during domain alignment in OT-based UDA. Our previous study discovered that completely aligning the distributions between the source and target domains can introduce a negative transfer, where classes or irrelevant classes from the source domain map to a different class in the target domain during distribution alignment. This negative transfer degrades the performance of the adaptive model. To mitigate this issue, we introduce coupling-weighted partial optimal transport (POT) within our UDA framework for SLR, where soft weighting on the OT coupling based on transport cost is adaptively set during domain alignment. A cross-domain SLR task was used in the experiments to evaluate the proposed UDA. The results demonstrated that our proposed UDA algorithm significantly improved the performance over existing UDA algorithms in a cross-channel SLR task.

We propose an approach to 3D reconstruction via inverse procedural modeling and investigate two variants of this approach. The first option consists in the fitting set of input parameters using a genetic algorithm. We demonstrate the results of our work on tree models, complex objects, with the reconstruction of which most existing methods cannot handle. The second option allows us to significantly improve the precision by using gradients within memetic algorithm, differentiable rendering and also differentiable procedural generators. In our work we see 2 main contributions. First, we propose a method to join differentiable rendering and inverse procedural modeling. This gives us an opportunity to reconstruct 3D model more accurately than existing approaches when a small number of input images are available (even for single image). Second, we join both differentiable and non-differentiable procedural generators in a single framework which allow us to apply inverse procedural modeling to fairly complex generators: when gradient is available, reconstructions is precise, when gradient is not available, reconstruction is approximate, but always high quality without visual artifacts.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

北京阿比特科技有限公司