A new integer-valued autoregressive process (INAR) with Generalised Lagrangian Katz (GLK) innovations is defined. We show that our GLK-INAR process is stationary, discrete semi-self-decomposable, infinite divisible, and provides a flexible modelling framework for count data allowing for under- and over-dispersion, asymmetry, and excess of kurtosis. A Bayesian inference framework and an efficient posterior approximation procedure based on Markov Chain Monte Carlo are provided. The proposed model family is applied to a Google Trend dataset which proxies the public concern about climate change around the world. The empirical results provide new evidence of heterogeneity across countries and keywords in the persistence, uncertainty, and long-run public awareness level.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.
Numerical solution of heterogeneous Helmholtz problems presents various computational challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness and scalability are key for practical and reliable solvers in large-scale applications, especially for large wave number problems. In this work we explore the use of a GenEO-type coarse space to build a two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free meshes, we observe robust convergence, iteration counts that do not increase with the wave number, and good scalability of our approach. We further provide results showing a favourable comparison with the DtN coarse space. Our numerical study shows promise that our solver methodology can be effective for challenging heterogeneous applications.
This tutorial aims to provide an intuitive understanding of the Gaussian processes regression. Gaussian processes regression (GPR) models have been widely used in machine learning applications because of their representation flexibility and inherent uncertainty measures over predictions. The basic concepts that a Gaussian process is built on, including multivariate normal distribution, kernels, non-parametric models, and joint and conditional probability were explained first. Next, the GPR was described concisely together with an implementation of a standard GPR algorithm. Beyond the standard GPR, packages to implement state-of-the-art Gaussian processes algorithms were reviewed. This tutorial was written in an accessible way to make sure readers without a machine learning background can obtain a good understanding of the GPR basics.
The success of large-scale models in recent years has increased the importance of statistical models with numerous parameters. Several studies have analyzed over-parameterized linear models with high-dimensional data that may not be sparse; however, existing results depend on the independent setting of samples. In this study, we analyze a linear regression model with dependent time series data under over-parameterization settings. We consider an estimator via interpolation and developed a theory for excess risk of the estimator under multiple dependence types. This theory can treat infinite-dimensional data without sparsity and handle long-memory processes in a unified manner. Moreover, we bound the risk in our theory via the integrated covariance and nondegeneracy of autocorrelation matrices. The results show that the convergence rate of risks with short-memory processes is identical to that of cases with independent data, while long-memory processes slow the convergence rate. We also present several examples of specific dependent processes that can be applied to our setting.
Super-Resolution is the process of generating a high-resolution image from a low-resolution image. A picture may be of lower resolution due to smaller spatial resolution, poor camera quality, as a result of blurring, or due to other possible degradations. Super-Resolution is the technique to improve the quality of a low-resolution photo by boosting its plausible resolution. The computer vision community has extensively explored the area of Super-Resolution. However, the previous Super-Resolution methods require vast amounts of data for training. This becomes problematic in domains where very few low-resolution, high-resolution pairs might be available. One of such areas is statistical downscaling, where super-resolution is increasingly being used to obtain high-resolution climate information from low-resolution data. Acquiring high-resolution climate data is extremely expensive and challenging. To reduce the cost of generating high-resolution climate information, Super-Resolution algorithms should be able to train with a limited number of low-resolution, high-resolution pairs. This paper tries to solve the aforementioned problem by introducing a semi-supervised way to perform super-resolution that can generate sharp, high-resolution images with as few as 500 paired examples. The proposed semi-supervised technique can be used as a plug-and-play module with any supervised GAN-based Super-Resolution method to enhance its performance. We quantitatively and qualitatively analyze the performance of the proposed model and compare it with completely supervised methods as well as other unsupervised techniques. Comprehensive evaluations show the superiority of our method over other methods on different metrics. We also offer the applicability of our approach in statistical downscaling to obtain high-resolution climate images.
We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.
We consider M-estimation problems, where the target value is determined using a minimizer of an expected functional of a Levy process. With discrete observations from the Levy process, we can produce a "quasi-path" by shuffling increments of the Levy process, we call it a quasi-process. Under a suitable sampling scheme, a quasi-process can converge weakly to the true process according to the properties of the stationary and independent increments. Using this resampling technique, we can estimate objective functionals similar to those estimated using the Monte Carlo simulations, and it is available as a contrast function. The M-estimator based on these quasi-processes can be consistent and asymptotically normal.
Sufficient dimension reduction (SDR) is a successful tool in regression models. It is a feasible method to solve and analyze the nonlinear nature of the regression problems. This paper introduces the \textbf{itdr} R package that provides several functions based on integral transformation methods to estimate the SDR subspaces in a comprehensive and user-friendly manner. In particular, the \textbf{itdr} package includes the Fourier method (FM) and the convolution method (CM) of estimating the SDR subspaces such as the central mean subspace (CMS) and the central subspace (CS). In addition, the \textbf{itdr} package facilitates the recovery of the CMS and the CS by using the iterative Hessian transformation (IHT) method and the Fourier transformation approach for inverse dimension reduction method (invFM), respectively. Moreover, the use of the package is illustrated by three datasets. \textcolor{black}{Furthermore, this is the first package that implements integral transformation methods to estimate SDR subspaces. Hence, the \textbf{itdr} package may provide a huge contribution to research in the SDR field.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.