The planted clique problem is well-studied in the context of observing, explaining, and predicting interesting computational phenomena associated with statistical problems. When equating computational efficiency with the existence of polynomial time algorithms, the computational hardness of (some variant of) the planted clique problem can be used to infer the computational hardness of a host of other statistical problems. Is this ability to transfer computational hardness from (some variant of) the planted clique problem to other statistical problems robust to changing our notion of computational efficiency to space efficiency? We answer this question affirmatively for three different statistical problems, namely Sparse PCA, submatrix detection, and testing almost k-wise independence. The key challenge is that space efficient randomized reductions need to repeatedly access the randomness they use. Known reductions to these problems are all randomized and need polynomially many random bits to implement. Since we can not store polynomially many random bits in memory, it is unclear how to implement these existing reductions space efficiently. There are two ideas involved in circumventing this issue and implementing known reductions to these problems space efficiently. 1. When solving statistical problems, we can use parts of the input itself as randomness. 2. Secret leakage variants of the planted clique problem with appropriate secret leakage can be more useful than the standard planted clique problem when we want to use parts of the input as randomness. (abstract shortened due to arxiv constraints)
Importance sampling is a powerful tool for correcting the distributional mismatch in many statistical and machine learning problems, but in practice its performance is limited by the usage of simple proposals whose importance weights can be computed analytically. To address this limitation, Liu and Lee (2017) proposed a Black-Box Importance Sampling (BBIS) algorithm that computes the importance weights for arbitrary simulated samples by minimizing the kernelized Stein discrepancy. However, this requires knowing the score function of the target distribution, which is not easy to compute for many Bayesian problems. Hence, in this paper we propose another novel BBIS algorithm using minimum energy design, BBIS-MED, that requires only the unnormalized density function, which can be utilized as a post-processing step to improve the quality of Markov Chain Monte Carlo samples. We demonstrate the effectiveness and wide applicability of our proposed BBIS-MED algorithm on extensive simulations and a real-world Bayesian model calibration problem where the score function cannot be derived analytically.
The explosive growth of computation and energy cost of artificial intelligence has spurred strong interests in new computing modalities as potential alternatives to conventional electronic processors. Photonic processors that execute operations using photons instead of electrons, have promised to enable optical neural networks with ultra-low latency and power consumption. However, existing optical neural networks, limited by the underlying network designs, have achieved image recognition accuracy far below that of state-of-the-art electronic neural networks. In this work, we close this gap by embedding massively parallelized optical computation into flat camera optics that perform neural network computation during the capture, before recording an image on the sensor. Specifically, we harness large kernels and propose a large-kernel spatially-varying convolutional neural network learned via low-dimensional reparameterization techniques. We experimentally instantiate the network with a flat meta-optical system that encompasses an array of nanophotonic structures designed to induce angle-dependent responses. Combined with an extremely lightweight electronic backend with approximately 2K parameters we demonstrate a reconfigurable nanophotonic neural network reaches 72.76\% blind test classification accuracy on CIFAR-10 dataset, and, as such, the first time, an optical neural network outperforms the first modern digital neural network -- AlexNet (72.64\%) with 57M parameters, bringing optical neural network into modern deep learning era.
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before training. It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward maximization objective and the constraint satisfaction, which is ubiquitous in constrained decision-making. To tackle this issue, we propose a new constrained RL approach that searches for policy and constraint specifications together. This method features the adaptation of relaxing the constraint according to a relaxation cost introduced in the learning objective. Since this feature mimics how ecological systems adapt to disruptions by altering operation, our approach is termed as resilient constrained RL. Specifically, we provide a set of sufficient conditions that balance the constraint satisfaction and the reward maximization in notion of resilient equilibrium, propose a tractable formulation of resilient constrained policy optimization that takes this equilibrium as an optimal solution, and advocate two resilient constrained policy search algorithms with non-asymptotic convergence guarantees on the optimality gap and constraint satisfaction. Furthermore, we demonstrate the merits and the effectiveness of our approach in computational experiments.
Nash equilibrium} (NE) can be stated as a formal theorem on a multilinear form, free of game theory terminology. On the other hand, inspired by this formalism, we state and prove a {\it multilinear minimax theorem}, a generalization of von Neumann's bilinear minimax theorem. As in the bilinear case, the proof is based on relating the underlying optimizations to a primal-dual pair of linear programming problems, albeit more complicated LPs. The theorem together with its proof is of independent interest. Next, we use the theorem to associate to a multilinear form in NE a {\it multilinear minimax relaxation} (MMR), where the primal-dual pair of solutions induce an approximate equilibrium point that provides a nontrivial upper bound on a convex combination of {\it expected payoffs} in any NE solution. In fact we show any positive probability vector associated to the players induces a corresponding {\it diagonally-scaled} MMR approximate equilibrium with its associated upper bound. By virtue of the proof of the multilinear minimax theorem, MMR solution can be computed in polynomial-time. On the other hand, it is known that even in bimatrix games NE is {\it PPAD-complete}, a complexity class in NP not known to be in P. The quality of MMR solution and the efficiency of solving the underlying LPs are the subject of further investigation. However, as shown in a separate article, for a large set of test problems in bimatrix games, not only the MMR payoffs for both players are better than any NE payoffs, so is the computing time of MMR in contrast with that of Lemke-Howsen algorithm. In large size problems the latter algorithm even fails to produce a Nash equilibrium. In summary, solving MMR provides a worthy approximation even if Nash equilibrium is shown to be computable in polynomial-time.
Linear arrangements of graphs are a well-known type of graph labeling and are found at the heart of many important computational problems, such as the Minimum Linear Arrangement Problem ($\texttt{minLA}$). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are often drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem ($\texttt{MaxLA}$), the maximization variant of $\texttt{minLA}$. We devise a new characterization of maximum arrangements of general graphs, and prove that $\texttt{MaxLA}$ can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present two constrained variants of $\texttt{MaxLA}$ we call $\texttt{bipartite MaxLA}$ and $\texttt{1-thistle MaxLA}$. We prove that the former can be solved in $O(n)$ for any bipartite graph; the latter, by an algorithm that typically runs in $O(n^3)$ on unlabelled trees. The combination of the two variants has two promising characteristics. First, it solves $\texttt{MaxLA}$ for almost all trees consisting of a few tenths of nodes. Second, it produces a high quality approximation to $\texttt{MaxLA}$ for trees where the algorithm fails to solve $\texttt{MaxLA}$. Furthermore, we conjecture that $\texttt{bipartite MaxLA}$ solves $\texttt{MaxLA}$ for at least $50\%$ of all free trees.
This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a $4\times 5$ matrix multiplied by a $5\times 5$ matrix from $76$ to $73$, and that from $95$ to $94$ for a $5 \times 5$ matrix multiplied by another $5\times 5$ matrix. These results are obtained in characteristic two.
We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.
Optimal transport is a fundamental topic that has attracted a great amount of attention from the optimization community in the past decades. In this paper, we consider an interesting discrete dynamic optimal transport problem: can we efficiently update the optimal transport plan when the weights or the locations of the data points change? This problem is naturally motivated by several applications in machine learning. For example, we often need to compute the optimal transport cost between two different data sets; if some changes happen to a few data points, should we re-compute the high complexity cost function or update the cost by some efficient dynamic data structure? We are aware that several dynamic maximum flow algorithms have been proposed before, however, the research on dynamic minimum cost flow problem is still quite limited, to the best of our knowledge. We propose a novel 2D Skip Orthogonal List together with some dynamic tree techniques. Although our algorithm is based on the conventional simplex method, it can efficiently find the variable to pivot within expected $O(1)$ time, and complete each pivoting operation within expected $O(|V|)$ time where $V$ is the set of all supply and demand nodes. Since dynamic modifications typically do not introduce significant changes, our algorithm requires only a few simplex iterations in practice. So our algorithm is more efficient than re-computing the optimal transport cost that needs at least one traversal over all $|E| = O(|V|^2)$ variables, where $|E|$ denotes the number of edges in the network. Our experiments demonstrate that our algorithm significantly outperforms existing algorithms in the dynamic scenarios.
Recently, multimodal prompting, which introduces learnable missing-aware prompts for all missing modality cases, has exhibited impressive performance. However, it encounters two critical issues: 1) The number of prompts grows exponentially as the number of modalities increases; and 2) It lacks robustness in scenarios with different missing modality settings between training and inference. In this paper, we propose a simple yet effective prompt design to address these challenges. Instead of using missing-aware prompts, we utilize prompts as modality-specific tokens, enabling them to capture the unique characteristics of each modality. Furthermore, our prompt design leverages orthogonality between prompts as a key element to learn distinct information across different modalities and promote diversity in the learned representations. Extensive experiments demonstrate that our prompt design enhances both performance and robustness while reducing the number of prompts.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.