In legal decisions, split votes (SV) occur when judges cannot reach a unanimous decision, posing a difficulty for lawyers who must navigate diverse legal arguments and opinions. In high-stakes domains, understanding the alignment of perceived difficulty between humans and AI systems is crucial to build trust. However, existing NLP calibration methods focus on a classifier's awareness of predictive performance, measured against the human majority class, overlooking inherent human label variation (HLV). This paper explores split votes as naturally observable human disagreement and value pluralism. We collect judges' vote distributions from the European Court of Human Rights (ECHR), and present SV-ECHR, a case outcome classification (COC) dataset with SV information. We build a taxonomy of disagreement with SV-specific subcategories. We further assess the alignment of perceived difficulty between models and humans, as well as confidence- and human-calibration of COC models. We observe limited alignment with the judge vote distribution. To our knowledge, this is the first systematic exploration of calibration to human judgements in legal NLP. Our study underscores the necessity for further research on measuring and enhancing model calibration considering HLV in legal decision tasks.
Denoising Diffusion Probabilistic Models (DDPMs) have accomplished much in the realm of generative AI. Despite their high performance, there is room for improvement, especially in terms of sample fidelity by utilizing statistical properties that impose structural integrity, such as isotropy. Minimizing the mean squared error between the additive and predicted noise alone does not impose constraints on the predicted noise to be isotropic. Thus, we were motivated to utilize the isotropy of the additive noise as a constraint on the objective function to enhance the fidelity of DDPMs. Our approach is simple and can be applied to any DDPM variant. We validate our approach by presenting experiments conducted on four synthetic 2D datasets as well as on unconditional image generation. As demonstrated by the results, the incorporation of this constraint improves the fidelity metrics, Precision and Density for the 2D datasets as well as for the unconditional image generation.
Visual detection of Micro Air Vehicles (MAVs) has attracted increasing attention in recent years due to its important application in various tasks. The existing methods for MAV detection assume that the training set and testing set have the same distribution. As a result, when deployed in new domains, the detectors would have a significant performance degradation due to domain discrepancy. In this paper, we study the problem of cross-domain MAV detection. The contributions of this paper are threefold. 1) We propose a Multi-MAV-Multi-Domain (M3D) dataset consisting of both simulation and realistic images. Compared to other existing datasets, the proposed one is more comprehensive in the sense that it covers rich scenes, diverse MAV types, and various viewing angles. A new benchmark for cross-domain MAV detection is proposed based on the proposed dataset. 2) We propose a Noise Suppression Network (NSN) based on the framework of pseudo-labeling and a large-to-small training procedure. To reduce the challenging pseudo-label noises, two novel modules are designed in this network. The first is a prior-based curriculum learning module for allocating adaptive thresholds for pseudo labels with different difficulties. The second is a masked copy-paste augmentation module for pasting truly-labeled MAVs on unlabeled target images and thus decreasing pseudo-label noises. 3) Extensive experimental results verify the superior performance of the proposed method compared to the state-of-the-art ones. In particular, it achieves mAP of 46.9%(+5.8%), 50.5%(+3.7%), and 61.5%(+11.3%) on the tasks of simulation-to-real adaptation, cross-scene adaptation, and cross-camera adaptation, respectively.
Human-driven vehicles (HVs) amplify naturally occurring perturbations in traffic, leading to congestion--a major contributor to increased fuel consumption, higher collision risks, and reduced road capacity utilization. While previous research demonstrates that Robot Vehicles (RVs) can be leveraged to mitigate these issues, most such studies rely on simulations with simplistic models of human car-following behaviors. In this work, we analyze real-world driving trajectories and extract a wide range of acceleration profiles. We then incorporates these profiles into simulations for training RVs to mitigate congestion. We evaluate the safety, efficiency, and stability of mixed traffic via comprehensive experiments conducted in two mixed traffic environments (Ring and Bottleneck) at various traffic densities, configurations, and RV penetration rates. The results show that under real-world perturbations, prior RV controllers experience performance degradation on all three objectives (sometimes even lower than 100% HVs). To address this, we introduce a reinforcement learning based RV that employs a congestion stage classifier to optimize the safety, efficiency, and stability of mixed traffic. Our RVs demonstrate significant improvements: safety by up to 66%, efficiency by up to 54%, and stability by up to 97%.
For the past few years, the Consumer Internet of Things (CIoT) has entered public lives. While CIoT has improved the convenience of people's daily lives, it has also brought new security and privacy concerns. In this survey, we try to figure out what researchers can learn about the security and privacy of CIoT by traffic analysis, a popular method in the security community. From the security and privacy perspective, this survey seeks out the new characteristics in CIoT traffic analysis, the state-of-the-art progress in CIoT traffic analysis, and the challenges yet to be solved. We collected 310 papers from January 2018 to December 2023 related to CIoT traffic analysis from the security and privacy perspective and summarized the process of CIoT traffic analysis in which the new characteristics of CIoT are identified. Then, we detail existing works based on five application goals: device fingerprinting, user activity inference, malicious traffic analysis, security analysis, and measurement. At last, we discuss the new challenges and future research directions.
Rug pulls pose a grave threat to the cryptocurrency ecosystem, leading to substantial financial loss and undermining trust in decentralized finance (DeFi) projects. With the emergence of new rug pull patterns, research on rug pull is out of state. To fill this gap, we first conducted an extensive analysis of the literature review, encompassing both scholarly and industry sources. By examining existing academic articles and industrial discussions on rug pull projects, we present a taxonomy inclusive of 34 root causes, introducing six new categories inspired by industry sources: burn, hidden owner, ownership transfer, unverified contract, external call, and fake LP lock. Based on the developed taxonomy, we evaluated current rug pull datasets and explored the effectiveness and limitations of existing detection mechanisms. Our evaluation indicates that the existing datasets, which document 2,448 instances, address only 7 of the 34 root causes, amounting to a mere 20% coverage. It indicates that existing open-source datasets need to be improved to study rug pulls. In response, we have constructed a more comprehensive dataset containing 2,360 instances, expanding the coverage to 54% with the best effort. In addition, the examination of 14 detection tools showed that they can identify 25 of the 34 root causes, achieving a coverage of 73.5%. There are nine root causes (Fake LP Lock, Hidden Fee, and Destroy Token, Fake Money Transfer, Ownership Transfer, Liquidity Pool Block, Freeze Account, Wash-Trading, Hedge) that the existing tools cannot cover. Our work indicates that there is a significant gap between current research and detection tools, and the actual situation of rug pulls.
Robotic exoskeletons can enhance human strength and aid people with physical disabilities. However, designing them to ensure safety and optimal performance presents significant challenges. Developing exoskeletons should incorporate specific optimization algorithms to find the best design. This study investigates the potential of Evolutionary Computation (EC) methods in robotic design optimization, with an underactuated hand exoskeleton (U-HEx) used as a case study. We propose improving the performance and usability of the U-HEx design, which was initially optimized using a naive brute-force approach, by integrating EC techniques such as Genetic Algorithm and Big Bang-Big Crunch Algorithm. Comparative analysis revealed that EC methods consistently yield more precise and optimal solutions than brute force in a significantly shorter time. This allowed us to improve the optimization by increasing the number of variables in the design, which was impossible with naive methods. The results show significant improvements in terms of the torque magnitude the device transfers to the user, enhancing its efficiency. These findings underline the importance of performing proper optimization while designing exoskeletons, as well as providing a significant improvement to this specific robotic design.
We consider the well-studied dueling bandit problem, where a learner aims to identify near-optimal actions using pairwise comparisons, under the constraint of differential privacy. We consider a general class of utility-based preference matrices for large (potentially unbounded) decision spaces and give the first differentially private dueling bandit algorithm for active learning with user preferences. Our proposed algorithms are computationally efficient with near-optimal performance, both in terms of the private and non-private regret bound. More precisely, we show that when the decision space is of finite size $K$, our proposed algorithm yields order optimal $O\Big(\sum_{i = 2}^K\log\frac{KT}{\Delta_i} + \frac{K}{\epsilon}\Big)$ regret bound for pure $\epsilon$-DP, where $\Delta_i$ denotes the suboptimality gap of the $i$-th arm. We also present a matching lower bound analysis which proves the optimality of our algorithms. Finally, we extend our results to any general decision space in $d$-dimensions with potentially infinite arms and design an $\epsilon$-DP algorithm with regret $\tilde{O} \left( \frac{d^6}{\kappa \epsilon } + \frac{ d\sqrt{T }}{\kappa} \right)$, providing privacy for free when $T \gg d$.
Large Language Models (LLMs) have shown remarkable capabilities, but their reasoning abilities and underlying mechanisms remain poorly understood. We present a novel approach to enhance LLMs' reasoning through attention mechanism optimization, without additional training data. We identify inefficiencies in the attention distribution caused by non-semantic tokens and propose an algorithm to re-balance the skewed distribution, enabling the model to abstract more nuanced knowledge. Our experiments demonstrate significantly improved reasoning capabilities, particularly for non-STEM questions. We provide insights into the role of attention patterns in LLMs' reasoning and propose a method to enhance these abilities, paving the way for more powerful and versatile language models.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.