Invertible neural networks (INNs) are neural network architectures with invertibility by design. Thanks to their invertibility and the tractability of Jacobian, INNs have various machine learning applications such as probabilistic modeling, generative modeling, and representation learning. However, their attractive properties often come at the cost of restricting the layer designs, which poses a question on their representation power: can we use these models to approximate sufficiently diverse functions? To answer this question, we have developed a general theoretical framework to investigate the representation power of INNs, building on a structure theorem of differential geometry. The framework simplifies the approximation problem of diffeomorphisms, which enables us to show the universal approximation properties of INNs. We apply the framework to two representative classes of INNs, namely Coupling-Flow-based INNs (CF-INNs) and Neural Ordinary Differential Equations (NODEs), and elucidate their high representation power despite the restrictions on their architectures.
Bilevel optimization has arisen as a powerful tool in modern machine learning. However, due to the nested structure of bilevel optimization, even gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations, which can be costly and unscalable in practice. Recently, Hessian-free bilevel schemes have been proposed to resolve this issue, where the general idea is to use zeroth- or first-order methods to approximate the full hypergradient of the bilevel problem. However, we empirically observe that such approximation can lead to large variance and unstable training, but estimating only the response Jacobian matrix as a partial component of the hypergradient turns out to be extremely effective. To this end, we propose a new Hessian-free method, which adopts the zeroth-order-like method to approximate the response Jacobian matrix via taking difference between two optimization paths. Theoretically, we provide the convergence rate analysis for the proposed algorithms, where our key challenge is to characterize the approximation and smoothness properties of the trajectory-dependent estimator, which can be of independent interest. This is the first known convergence rate result for this type of Hessian-free bilevel algorithms. Experimentally, we demonstrate that the proposed algorithms outperform baseline bilevel optimizers on various bilevel problems. Particularly, in our experiment on few-shot meta-learning with ResNet-12 network over the miniImageNet dataset, we show that our algorithm outperforms baseline meta-learning algorithms, while other baseline bilevel optimizers do not solve such meta-learning problems within a comparable time frame.
This paper investigates the problem of regret minimization in linear time-varying (LTV) dynamical systems. Due to the simultaneous presence of uncertainty and non-stationarity, designing online control algorithms for unknown LTV systems remains a challenging task. At a cost of NP-hard offline planning, prior works have introduced online convex optimization algorithms, although they suffer from nonparametric rate of regret. In this paper, we propose the first computationally tractable online algorithm with regret guarantees that avoids offline planning over the state linear feedback policies. Our algorithm is based on the optimism in the face of uncertainty (OFU) principle in which we optimistically select the best model in a high confidence region. Our algorithm is then more explorative when compared to previous approaches. To overcome non-stationarity, we propose either a restarting strategy (R-OFU) or a sliding window (SW-OFU) strategy. With proper configuration, our algorithm is attains sublinear regret $O(T^{2/3})$. These algorithms utilize data from the current phase for tracking variations on the system dynamics. We corroborate our theoretical findings with numerical experiments, which highlight the effectiveness of our methods. To the best of our knowledge, our study establishes the first model-based online algorithm with regret guarantees under LTV dynamical systems.
We propose methods to train convolutional neural networks (CNNs) with both binarized weights and activations, leading to quantized models that are specifically friendly to mobile devices with limited power capacity and computation resources. Previous works on quantizing CNNs often seek to approximate the floating-point information using a set of discrete values, which we call value approximation, typically assuming the same architecture as the full-precision networks. Here we take a novel "structure approximation" view of quantization -- it is very likely that different architectures designed for low-bit networks may be better for achieving good performance. In particular, we propose a "network decomposition" strategy, termed Group-Net, in which we divide the network into groups. Thus, each full-precision group can be effectively reconstructed by aggregating a set of homogeneous binary branches. In addition, we learn effective connections among groups to improve the representation capability. Moreover, the proposed Group-Net shows strong generalization to other tasks. For instance, we extend Group-Net for accurate semantic segmentation by embedding rich context into the binary structure. Furthermore, for the first time, we apply binary neural networks to object detection. Experiments on both classification, semantic segmentation and object detection tasks demonstrate the superior performance of the proposed methods over various quantized networks in the literature. Our methods outperform the previous best binary neural networks in terms of accuracy and computation efficiency.
The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of renewable energy brought to the power system. Although traditional optimization techniques, such as stochastic and robust optimization approaches, could be used to address the OPF problem in the face of renewable energy uncertainty, their effectiveness in dealing with large-scale problems remains limited. As a result, deep learning techniques, such as neural networks, have recently been developed to improve computational efficiency in solving large-scale OPF problems. However, the feasibility and optimality of the solution may not be guaranteed. In this paper, we propose an optimization model-informed generative adversarial network (MI-GAN) framework to solve OPF under uncertainty. The main contributions are summarized into three aspects: (1) to ensure feasibility and improve optimality of generated solutions, three important layers are proposed: feasibility filter layer, comparison layer, and gradient-guided layer; (2) in the GAN-based framework, an efficient model-informed selector incorporating these three new layers is established; and (3) a new recursive iteration algorithm is also proposed to improve solution optimality. The numerical results on IEEE test systems show that the proposed method is very effective and promising.
We study the dynamics of (synchronous) one-dimensional cellular automata with cyclical boundary conditions that evolve according to the majority rule with radius $ r $. We introduce a notion that we term cell stability with which we express the structure of the possible configurations that could emerge in this setting. Our main finding is that apart from the configurations of the form $ (0^{r+1}0^* + 1^{r+1}1^*)^* $, which are always fixed-points, the other configurations that the automata could possibly converge to, which are known to be either fixed-points or 2-cycles, have a particular spatially periodic structure. Namely, each of these configurations is of the form $ s^* $ where $ s $ consists of $ O(r^2) $ consecutive sequences of cells with the same state, each such sequence is of length at most $ r $, and the total length of $ s $ is $ O(r^2) $ as well. We show that an analogous result also holds for the minority rule.
We propose a theoretical framework that generalizes simple and fast algorithms for hierarchical agglomerative clustering to weighted graphs with both attractive and repulsive interactions between the nodes. This framework defines GASP, a Generalized Algorithm for Signed graph Partitioning, and allows us to explore many combinations of different linkage criteria and cannot-link constraints. We prove the equivalence of existing clustering methods to some of those combinations and introduce new algorithms for combinations that have not been studied before. We study both theoretical and empirical properties of these combinations and prove that some of these define an ultrametric on the graph. We conduct a systematic comparison of various instantiations of GASP on a large variety of both synthetic and existing signed clustering problems, in terms of accuracy but also efficiency and robustness to noise. Lastly, we show that some of the algorithms included in our framework, when combined with the predictions from a CNN model, result in a simple bottom-up instance segmentation pipeline. Going all the way from pixels to final segments with a simple procedure, we achieve state-of-the-art accuracy on the CREMI 2016 EM segmentation benchmark without requiring domain-specific superpixels.
Providing non-trivial certificates of safety for non-linear stochastic systems is an important open problem that limits the wider adoption of autonomous systems in safety-critical applications. One promising solution to address this problem is barrier functions. The composition of a barrier function with a stochastic system forms a supermartingale, thus enabling the computation of the probability that the system stays in a safe set over a finite time horizon via martingale inequalities. However, existing approaches to find barrier functions for stochastic systems generally rely on convex optimization programs that restrict the search of a barrier to a small class of functions such as low degree SoS polynomials and can be computationally expensive. In this paper, we parameterize a barrier function as a neural network and show that techniques for robust training of neural networks can be successfully employed to find neural barrier functions. Specifically, we leverage bound propagation techniques to certify that a neural network satisfies the conditions to be a barrier function via linear programming and then employ the resulting bounds at training time to enforce the satisfaction of these conditions. We also present a branch-and-bound scheme that makes the certification framework scalable. We show that our approach outperforms existing methods in several case studies and often returns certificates of safety that are orders of magnitude larger.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.