亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Symbolic regression (SR) is a challenging task in machine learning that involves finding a mathematical expression for a function based on its values. Recent advancements in SR have demonstrated the efficacy of pretrained transformer-based models for generating equations as sequences, which benefit from large-scale pretraining on synthetic datasets and offer considerable advantages over GP-based methods in terms of inference time. However, these models focus on supervised pretraining goals borrowed from text generation and ignore equation-specific objectives like accuracy and complexity. To address this, we propose TPSR, a Transformer-based Planning strategy for Symbolic Regression that incorporates Monte Carlo Tree Search into the transformer decoding process. TPSR, as opposed to conventional decoding strategies, allows for the integration of non-differentiable feedback, such as fitting accuracy and complexity, as external sources of knowledge into the equation generation process. Extensive experiments on various datasets show that our approach outperforms state-of-the-art methods, enhancing the model's fitting-complexity trade-off, extrapolation abilities, and robustness to noise. We also demonstrate that the utilization of various caching mechanisms can further enhance the efficiency of TPSR.

相關內容

機(ji)器(qi)學習系統設計系統評估標準

Brain networks, graphical models such as those constructed from MRI, have been widely used in pathological prediction and analysis of brain functions. Within the complex brain system, differences in neuronal connection strengths parcellate the brain into various functional modules (network communities), which are critical for brain analysis. However, identifying such communities within the brain has been a nontrivial issue due to the complexity of neuronal interactions. In this work, we propose a novel interpretable transformer-based model for joint hierarchical cluster identification and brain network classification. Extensive experimental results on real-world brain network datasets show that with the help of hierarchical clustering, the model achieves increased accuracy and reduced runtime complexity while providing plausible insight into the functional organization of brain regions. The implementation is available at //github.com/DDVD233/THC.

Federated edge learning (FEEL) is a popular distributed learning framework for privacy-preserving at the edge, in which densely distributed edge devices periodically exchange model-updates with the server to complete the global model training. Due to limited bandwidth and uncertain wireless environment, FEEL may impose heavy burden to the current communication system. In addition, under the common FEEL framework, the server needs to wait for the slowest device to complete the update uploading before starting the aggregation process, leading to the straggler issue that causes prolonged communication time. In this paper, we propose to accelerate FEEL from two aspects: i.e., 1) performing data compression on the edge devices and 2) setting a deadline on the edge server to exclude the straggler devices. However, undesired gradient compression errors and transmission outage are introduced by the aforementioned operations respectively, affecting the convergence of FEEL as well. In view of these practical issues, we formulate a training time minimization problem, with the compression ratio and deadline to be optimized. To this end, an asymptotically unbiased aggregation scheme is first proposed to ensure zero optimality gap after convergence, and the impact of compression error and transmission outage on the overall training time are quantified through convergence analysis. Then, the formulated problem is solved in an alternating manner, based on which, the novel joint compression and deadline optimization (JCDO) algorithm is derived. Numerical experiments for different use cases in FEEL including image classification and autonomous driving show that the proposed method is nearly 30X faster than the vanilla FedAVG algorithm, and outperforms the state-of-the-art schemes.

Graph Transformer is gaining increasing attention in the field of machine learning and has demonstrated state-of-the-art performance on benchmarks for graph representation learning. However, as current implementations of Graph Transformer primarily focus on learning representations of small-scale graphs, the quadratic complexity of the global self-attention mechanism presents a challenge for full-batch training when applied to larger graphs. Additionally, conventional sampling-based methods fail to capture necessary high-level contextual information, resulting in a significant loss of performance. In this paper, we introduce the Hierarchical Scalable Graph Transformer (HSGT) as a solution to these challenges. HSGT successfully scales the Transformer architecture to node representation learning tasks on large-scale graphs, while maintaining high performance. By utilizing graph hierarchies constructed through coarsening techniques, HSGT efficiently updates and stores multi-scale information in node embeddings at different levels. Together with sampling-based training methods, HSGT effectively captures and aggregates multi-level information on the hierarchical graph using only Transformer blocks. Empirical evaluations demonstrate that HSGT achieves state-of-the-art performance on large-scale benchmarks with graphs containing millions of nodes with high efficiency.

Training a neural network (NN) typically relies on some type of curve-following method, such as gradient descent (GD) (and stochastic gradient descent (SGD)), ADADELTA, ADAM or limited memory algorithms. Convergence for these algorithms usually relies on having access to a large quantity of observations in order to achieve a high level of accuracy and, with certain classes of functions, these algorithms could take multiple epochs of data points to catch on. Herein, a different technique with the potential of achieving dramatically better speeds of convergence, especially for shallow networks, is explored: it does not curve-follow but rather relies on 'decoupling' hidden layers and on updating their weighted connections through bootstrapping, resampling and linear regression. By utilizing resampled observations, the convergence of this process is empirically shown to be remarkably fast and to require a lower amount of data points: in particular, our experiments show that one needs a fraction of the observations that are required with traditional neural network training methods to approximate various classes of functions.

Symbolic Regression (SR) can generate interpretable, concise expressions that fit a given dataset, allowing for more human understanding of the structure than black-box approaches. The addition of background knowledge (in the form of symbolic mathematical constraints) allows for the generation of expressions that are meaningful with respect to theory while also being consistent with data. We specifically examine the addition of constraints to traditional genetic algorithm (GA) based SR (PySR) as well as a Markov-chain Monte Carlo (MCMC) based Bayesian SR architecture (Bayesian Machine Scientist), and apply these to rediscovering adsorption equations from experimental, historical datasets. We find that, while hard constraints prevent GA and MCMC SR from searching, soft constraints can lead to improved performance both in terms of search effectiveness and model meaningfulness, with computational costs increasing by about an order-of-magnitude. If the constraints do not correlate well with the dataset or expected models, they can hinder the search of expressions. We find Bayesian SR is better these constraints (as the Bayesian prior) than by modifying the fitness function in the GA

Automatic layout generation that can synthesize high-quality layouts is an important tool for graphic design in many applications. Though existing methods based on generative models such as Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs) have progressed, they still leave much room for improving the quality and diversity of the results. Inspired by the recent success of diffusion models in generating high-quality images, this paper explores their potential for conditional layout generation and proposes Transformer-based Layout Diffusion Model (LayoutDM) by instantiating the conditional denoising diffusion probabilistic model (DDPM) with a purely transformer-based architecture. Instead of using convolutional neural networks, a transformer-based conditional Layout Denoiser is proposed to learn the reverse diffusion process to generate samples from noised layout data. Benefitting from both transformer and DDPM, our LayoutDM is of desired properties such as high-quality generation, strong sample diversity, faithful distribution coverage, and stationary training in comparison to GANs and VAEs. Quantitative and qualitative experimental results show that our method outperforms state-of-the-art generative models in terms of quality and diversity.

Although large language models demonstrate remarkable question-answering performances, revealing the intermediate reasoning steps that the models faithfully follow remains challenging. In this paper, we propose FAME (FAithful question answering with MontE-carlo planning) to answer questions based on faithful reasoning steps. The reasoning steps are organized as a structured entailment tree, which shows how premises are used to produce intermediate conclusions that can prove the correctness of the answer. We formulate the task as a discrete decision-making problem and solve it through the interaction of a reasoning environment and a controller. The environment is modular and contains several basic task-oriented modules, while the controller proposes actions to assemble the modules. Since the search space could be large, we introduce a Monte-Carlo planning algorithm to do a look-ahead search and select actions that will eventually lead to high-quality steps. FAME achieves state-of-the-art performance on the standard benchmark. It can produce valid and faithful reasoning steps compared with large language models with a much smaller model size.

Task-Oriented Dialogue (TOD) systems are designed to carry out specific tasks by tracking dialogue states and generating appropriate responses to help users achieve defined goals. Recently, end-to-end dialogue models pre-trained based on large datasets have shown promising performance in the conversational system. However, they share the same parameters to train tasks of the dialogue system (NLU, DST, NLG), so debugging each task is challenging. Also, they require a lot of effort to fine-tune large parameters to create a task-oriented chatbot, making it difficult for non-experts to handle. Therefore, we intend to train relatively lightweight and fast models compared to PLM. In this paper, we propose an End-to-end TOD system with Task-Optimized Adapters which learn independently per task, adding only small number of parameters after fixed layers of pre-trained network. We also enhance the performance of the DST and NLG modules through reinforcement learning, overcoming the learning curve that has lacked at the adapter learning and enabling the natural and consistent response generation that is appropriate for the goal. Our method is a model-agnostic approach and does not require prompt-tuning as only input data without a prompt. As results of the experiment, our method shows competitive performance on the MultiWOZ benchmark compared to the existing end-to-end models. In particular, we attain state-of-the-art performance on the DST task of 2.2 dataset.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司