亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We aim at a holistic perspective on program logics, including Hoare and incorrectness logics. To this end, we study different classes of properties arising from the generalization of the aforementioned logics. We compare our results with the properties expressible in the language of Kleene algebra with top and tests.

相關內容

醫學(xue)(xue)人(ren)工(gong)(gong)智能(neng)AIM(Artificial Intelligence in Medicine)雜志發表了(le)多學(xue)(xue)科(ke)領域的原創文章,涉(she)及醫學(xue)(xue)中(zhong)的人(ren)工(gong)(gong)智能(neng)理論(lun)和實踐,以(yi)醫學(xue)(xue)為(wei)導向的人(ren)類生物學(xue)(xue)和衛生保(bao)健。醫學(xue)(xue)中(zhong)的人(ren)工(gong)(gong)智能(neng)可(ke)以(yi)被(bei)描述為(wei)與研究(jiu)、項(xiang)目(mu)和應用相(xiang)關的科(ke)學(xue)(xue)學(xue)(xue)科(ke),旨在通(tong)過基于知識或數(shu)據密集型(xing)的計算機解決方案(an)支持基于決策的醫療任務,最終支持和改善人(ren)類護理提供者(zhe)的性能(neng)。 官網地址:

Vertical Federated Learning (VFL) is a federated learning paradigm where multiple participants, who share the same set of samples but hold different features, jointly train machine learning models. Although VFL enables collaborative machine learning without sharing raw data, it is still susceptible to various privacy threats. In this paper, we conduct the first comprehensive survey of the state-of-the-art in privacy attacks and defenses in VFL. We provide taxonomies for both attacks and defenses, based on their characterizations, and discuss open challenges and future research directions. Specifically, our discussion is structured around the model's life cycle, by delving into the privacy threats encountered during different stages of machine learning and their corresponding countermeasures. This survey not only serves as a resource for the research community but also offers clear guidance and actionable insights for practitioners to safeguard data privacy throughout the model's life cycle.

This study explores the use of Large Language Models (LLMs) to analyze text comments from Reddit users, aiming to achieve two primary objectives: firstly, to pinpoint critical excerpts that support a predefined psychological assessment of suicidal risk; and secondly, to summarize the material to substantiate the preassigned suicidal risk level. The work is circumscribed to the use of "open-source" LLMs that can be run locally, thereby enhancing data privacy. Furthermore, it prioritizes models with low computational requirements, making it accessible to both individuals and institutions operating on limited computing budgets. The implemented strategy only relies on a carefully crafted prompt and a grammar to guide the LLM's text completion. Despite its simplicity, the evaluation metrics show outstanding results, making it a valuable privacy-focused and cost-effective approach. This work is part of the Computational Linguistics and Clinical Psychology (CLPsych) 2024 shared task.

This comprehensive review article delves into the intricate realm of fault-tolerant control (FTC) schemes tailored for robotic manipulators. Our exploration spans the historical evolution of FTC, tracing its development over time, and meticulously examines the recent breakthroughs fueled by the synergistic integration of cutting-edge technologies such as artificial intelligence (AI), machine learning (ML), and digital twin technologies (DTT). The article places a particular emphasis on the transformative influence these contemporary trends exert on the landscape of robotic manipulator control and fault tolerance. By delving into the historical context, our aim is to provide a comprehensive understanding of the evolution of FTC schemes. This journey encompasses the transition from model-based and signal-based schemes to the role of sensors, setting the stage for an exploration of the present-day paradigm shift enabled by AI, ML, and DTT. The narrative unfolds as we dissect the intricate interplay between these advanced technologies and their applications in enhancing fault tolerance within the domain of robotic manipulators. Our review critically evaluates the impact of these advancements, shedding light on the novel methodologies, techniques, and applications that have emerged in recent times. The overarching goal of this article is to present a comprehensive perspective on the current state of fault diagnosis and fault-tolerant control within the context of robotic manipulators, positioning our exploration within the broader framework of AI, ML, and DTT advancements. Through a meticulous examination of both historical foundations and contemporary innovations, this review significantly contributes to the existing body of knowledge, offering valuable insights for researchers, practitioners, and enthusiasts navigating the dynamic landscape of robotic manipulator control.

In this study, we address multi-robot localization issues, with a specific focus on cooperative localization and observability analysis of relative pose estimation. Cooperative localization involves enhancing each robot's information through a communication network and message passing. If odometry data from a target robot can be transmitted to the ego robot, observability of their relative pose estimation can be achieved through range-only or bearing-only measurements, provided both robots have non-zero linear velocities. In cases where odometry data from a target robot are not directly transmitted but estimated by the ego robot, both range and bearing measurements are necessary to ensure observability of relative pose estimation. For ROS/Gazebo simulations, we explore four sensing and communication structures. We compare extended Kalman filtering (EKF) and pose graph optimization (PGO) estimation using different robust loss functions (filtering and smoothing with varying batch sizes of sliding windows) in terms of estimation accuracy. In hardware experiments, two Turtlebot3 equipped with UWB modules are used for real-world inter-robot relative pose estimation, applying both EKF and PGO and comparing their performance.

In this study, we explore the influence of different observation spaces on robot learning, focusing on three predominant modalities: RGB, RGB-D, and point cloud. Through extensive experimentation on over 17 varied contact-rich manipulation tasks, conducted across two benchmarks and simulators, we have observed a notable trend: point cloud-based methods, even those with the simplest designs, frequently surpass their RGB and RGB-D counterparts in performance. This remains consistent in both scenarios: training from scratch and utilizing pretraining. Furthermore, our findings indicate that point cloud observations lead to improved policy zero-shot generalization in relation to various geometry and visual clues, including camera viewpoints, lighting conditions, noise levels and background appearance. The outcomes suggest that 3D point cloud is a valuable observation modality for intricate robotic tasks. We will open-source all our codes and checkpoints, hoping that our insights can help design more generalizable and robust robotic models.

Applied recommender systems research is in a curious position. While there is a very rigorous protocol for measuring performance by A/B testing, best practice for finding a `B' to test does not explicitly target performance but rather targets a proxy measure. The success or failure of a given A/B test then depends entirely on if the proposed proxy is better correlated to performance than the previous proxy. No principle exists to identify if one proxy is better than another offline, leaving the practitioners shooting in the dark. The purpose of this position paper is to question this anti-Utopian thinking and argue that a non-standard use of the deep learning stacks actually has the potential to unlock reward optimizing recommendation.

Federated Learning (FL), while a breakthrough in decentralized machine learning, contends with significant challenges such as limited data availability and the variability of computational resources, which can stifle the performance and scalability of the models. The integration of Foundation Models (FMs) into FL presents a compelling solution to these issues, with the potential to enhance data richness and reduce computational demands through pre-training and data augmentation. However, this incorporation introduces novel issues in terms of robustness, privacy, and fairness, which have not been sufficiently addressed in the existing research. We make a preliminary investigation into this field by systematically evaluating the implications of FM-FL integration across these dimensions. We analyze the trade-offs involved, uncover the threats and issues introduced by this integration, and propose a set of criteria and strategies for navigating these challenges. Furthermore, we identify potential research directions for advancing this field, laying a foundation for future development in creating reliable, secure, and equitable FL systems.

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司