This paper presents a deep learning based approach to extract product comparison information out of user reviews on various e-commerce websites. Any comparative product review has three major entities of information: the names of the products being compared, the user opinion (predicate) and the feature or aspect under comparison. All these informing entities are dependent on each other and bound by the rules of the language, in the review. We observe that their inter-dependencies can be captured well using LSTMs. We evaluate our system on existing manually labeled datasets and observe out-performance over the existing Semantic Role Labeling (SRL) framework popular for this task.
This short paper introduces a novel approach to global sensitivity analysis, grounded in the variance-covariance structure of random variables derived from random measures. The proposed methodology facilitates the application of information-theoretic rules for uncertainty quantification, offering several advantages. Specifically, the approach provides valuable insights into the decomposition of variance within discrete subspaces, similar to the standard ANOVA analysis. To illustrate this point, the method is applied to datasets obtained from the analysis of randomized controlled trials on evaluating the efficacy of the COVID-19 vaccine and assessing clinical endpoints in a lung cancer study.
This paper investigates the relationship between scientists' cognitive profile and their ability to generate innovative ideas and gain scientific recognition. We propose a novel author-level metric based on the semantic representation of researchers' past publications to measure cognitive diversity both at individual and team levels. Using PubMed Knowledge Graph (PKG), we analyze the impact of cognitive diversity on novelty, as measured by combinatorial novelty indicators and peer labels on Faculty Opinion. We assessed scientific impact through citations and disruption indicators. We show that the presence of exploratory individuals (i.e., cognitively diverse) is beneficial in generating distant knowledge combinations, but only when balanced by a significant proportion of exploitative individuals (i.e., cognitively specialized). Furthermore, teams with a high proportion of exploitative profiles tend to consolidate science, whereas those with a significant share of both profiles tend to disrupt it. Cognitive diversity between team members appears to be always beneficial to combining more distant knowledge. However, to maximize the relevance of these distant combinations of knowledge, maintaining a limited number of exploratory individuals is essential, as exploitative individuals must question and debate their novel perspectives. These specialized individuals are the most qualified to extract the full potential of novel ideas and integrate them within the existing scientific paradigm.
In this paper, we critically evaluate Bayesian methods for uncertainty estimation in deep learning, focusing on the widely applied Laplace approximation and its variants. Our findings reveal that the conventional method of fitting the Hessian matrix negatively impacts out-of-distribution (OOD) detection efficiency. We propose a different point of view, asserting that focusing solely on optimizing prior precision can yield more accurate uncertainty estimates in OOD detection while preserving adequate calibration metrics. Moreover, we demonstrate that this property is not connected to the training stage of a model but rather to its intrinsic properties. Through extensive experimental evaluation, we establish the superiority of our simplified approach over traditional methods in the out-of-distribution domain.
This paper presents a novel vision-based proprioception approach for a soft robotic finger capable of estimating and reconstructing tactile interactions in terrestrial and aquatic environments. The key to this system lies in the finger's unique metamaterial structure, which facilitates omni-directional passive adaptation during grasping, protecting delicate objects across diverse scenarios. A compact in-finger camera captures high-framerate images of the finger's deformation during contact, extracting crucial tactile data in real time. We present a method of the volumetric discretized model of the soft finger and use the geometry constraints captured by the camera to find the optimal estimation of the deformed shape. The approach is benchmarked with a motion-tracking system with sparse markers and a haptic device with dense measurements. Both results show state-of-the-art accuracies, with a median error of 1.96 mm for overall body deformation, corresponding to 2.1$\%$ of the finger's length. More importantly, the state estimation is robust in both on-land and underwater environments as we demonstrate its usage for underwater object shape sensing. This combination of passive adaptation and real-time tactile sensing paves the way for amphibious robotic grasping applications.
This paper presents a method for learning Hamiltonian dynamics from a limited set of data points. The Hamiltonian vector field is found by regularized optimization over a reproducing kernel Hilbert space of vector fields that are inherently Hamiltonian, and where the vector field is required to be odd or even. This is done with a symplectic kernel, and it is shown how this symplectic kernel can be modified to be odd or even. The performance of the method is validated in simulations for two Hamiltonian systems. It is shown that the learned dynamics are Hamiltonian, and that the learned Hamiltonian vector field can be prescribed to be odd or even.
This paper investigates an emerging cache side channel attack defense approach involving the use of hardware performance counters (HPCs). These counters monitor microarchitectural events and analyze statistical deviations to differentiate between malicious and benign software. With numerous proposals and promising reported results, we seek to investigate whether published HPC-based detection methods are evaluated in a proper setting and under the right assumptions, such that their quality can be ensured for real-word deployment against cache side-channel attacks. To achieve this goal, this paper presents a comprehensive evaluation and scrutiny of existing literature on the subject matter in a form of a survey, accompanied by experimental evidences to support our evaluation.
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.