亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a signaling design for secure integrated sensing and communication (ISAC) systems comprising a dual-functional multi-input multi-output (MIMO) base station (BS) that simultaneously communicates with multiple users while detecting targets present in their vicinity, which are regarded as potential eavesdroppers. In particular, assuming that the distribution of each parameter to be estimated is known \textit{a priori}, we focus on optimizing the targets' sensing performance. To this end, we derive and minimize the Bayesian Cram\'er-Rao bound (BCRB), while ensuring certain communication quality of service (QoS) by exploiting constructive interference (CI). The latter scheme enforces that the received signals at the eavesdropping targets fall into the destructive region of the signal constellation, to deteriorate their decoding probability, thus enhancing the ISAC's system physical-layer security (PLS) capability. To tackle the nonconvexity of the formulated problem, a tailored successive convex approximation method is proposed for its efficient solution. Our extensive numerical results verify the effectiveness of the proposed secure ISAC design showing that the proposed algorithm outperforms block-level precoding techniques.

相關內容

In this work, we investigate the potential of a large language model (LLM) to directly comprehend visual signals without the necessity of fine-tuning on multi-modal datasets. The foundational concept of our method views an image as a linguistic entity, and translates it to a set of discrete words derived from the LLM's vocabulary. To achieve this, we present the Vision-to-Language Tokenizer, abbreviated as V2T Tokenizer, which transforms an image into a ``foreign language'' with the combined aid of an encoder-decoder, the LLM vocabulary, and a CLIP model. With this innovative image encoding, the LLM gains the ability not only for visual comprehension but also for image denoising and restoration in an auto-regressive fashion-crucially, without any fine-tuning. We undertake rigorous experiments to validate our method, encompassing understanding tasks like image recognition, image captioning, and visual question answering, as well as image denoising tasks like inpainting, outpainting, deblurring, and shift restoration. Code and models are available at //github.com/zh460045050/V2L-Tokenizer.

In this paper, we introduce VoteCut, an innovative method for unsupervised object discovery that leverages feature representations from multiple self-supervised models. VoteCut employs normalized-cut based graph partitioning, clustering and a pixel voting approach. Additionally, We present CuVLER (Cut-Vote-and-LEaRn), a zero-shot model, trained using pseudo-labels, generated by VoteCut, and a novel soft target loss to refine segmentation accuracy. Through rigorous evaluations across multiple datasets and several unsupervised setups, our methods demonstrate significant improvements in comparison to previous state-of-the-art models. Our ablation studies further highlight the contributions of each component, revealing the robustness and efficacy of our approach. Collectively, VoteCut and CuVLER pave the way for future advancements in image segmentation.

In this paper, we introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models, aiming to enhance computational efficiency and model performance by adjusting the number of activated experts based on input difficulty. Unlike traditional MoE approaches that rely on fixed Top-K routing, which activates a predetermined number of experts regardless of the input's complexity, our method dynamically selects experts based on the confidence level in expert selection for each input. This allows for a more efficient utilization of computational resources, activating more experts for complex tasks requiring advanced reasoning and fewer for simpler tasks. Through extensive evaluations, our dynamic routing method demonstrates substantial improvements over conventional Top-2 routing across various benchmarks, achieving an average improvement of 0.7% with less than 90% activated parameters. Further analysis shows our model dispatches more experts to tasks requiring complex reasoning skills, like BBH, confirming its ability to dynamically allocate computational resources in alignment with the input's complexity. Our findings also highlight a variation in the number of experts needed across different layers of the transformer model, offering insights into the potential for designing heterogeneous MoE frameworks. The code and models are available at //github.com/ZhenweiAn/Dynamic_MoE.

In this paper, we present Mondrian, an edge system that enables high-performance object detection on high-resolution video streams. Many lightweight models and system optimization techniques have been proposed for resource-constrained devices, but they do not fully utilize the potential of the accelerators over dynamic, high-resolution videos. To enable such capability, we devise a novel Compressive Packed Inference to minimize per-pixel processing costs by selectively determining the necessary pixels to process and combining them to maximize processing parallelism. In particular, our system quickly extracts ROIs and dynamically shrinks them, reflecting the effect of the fast-changing characteristics of objects and scenes. It then intelligently combines such scaled ROIs into large canvases to maximize the utilization of inference accelerators such as GPU. Evaluation across various datasets, models, and devices shows Mondrian outperforms state-of-the-art baselines (e.g., input rescaling, ROI extractions, ROI extractions+batching) by 15.0-19.7% higher accuracy, leading to $\times$6.65 higher throughput than frame-wise inference for processing various 1080p video streams. We will release the code after the paper review.

Our research endeavors to advance the concept of responsible artificial intelligence (AI), a topic of increasing importance within EU policy discussions. The EU has recently issued several publications emphasizing the necessity of trust in AI, underscoring the dual nature of AI as both a beneficial tool and a potential weapon. This dichotomy highlights the urgent need for international regulation. Concurrently, there is a need for frameworks that guide companies in AI development, ensuring compliance with such regulations. Our research aims to assist lawmakers and machine learning practitioners in navigating the evolving landscape of AI regulation, identifying focal areas for future attention. This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI. Through a structured literature review, we elucidate the current understanding of responsible AI. Drawing from this analysis, we propose an approach for developing a future framework centered around this concept. Our findings advocate for a human-centric approach to Responsible AI. This approach encompasses the implementation of AI methods with a strong emphasis on ethics, model explainability, and the pillars of privacy, security, and trust.

In this paper, we introduce InfiAgent-DABench, the first benchmark specifically designed to evaluate LLM-based agents on data analysis tasks. These tasks require agents to end-to-end solving complex tasks by interacting with an execution environment. This benchmark contains DAEval, a dataset consisting of 257 data analysis questions derived from 52 CSV files, and an agent framework which incorporates LLMs to serve as data analysis agents for both serving and evaluation. Since data analysis questions are often open-ended and hard to evaluate without human supervision, we adopt a format-prompting technique to convert each question into a closed-form format so that they can be automatically evaluated. Our extensive benchmarking of 34 LLMs uncovers the current challenges encountered in data analysis tasks. In addition, building on top of our agent framework, we develop a specialized agent, DAAgent, which surpasses GPT-3.5 by 3.9% on DABench. Evaluation datasets and toolkits for InfiAgent-DABench are released at //github.com/InfiAgent/InfiAgent .

In this paper, we delve into the advancement of domain-specific Large Language Models (LLMs) with a focus on their application in software development. We introduce DevAssistLlama, a model developed through instruction tuning, to assist developers in processing software-related natural language queries. This model, a variant of instruction tuned LLM, is particularly adept at handling intricate technical documentation, enhancing developer capability in software specific tasks. The creation of DevAssistLlama involved constructing an extensive instruction dataset from various software systems, enabling effective handling of Named Entity Recognition (NER), Relation Extraction (RE), and Link Prediction (LP). Our results demonstrate DevAssistLlama's superior capabilities in these tasks, in comparison with other models including ChatGPT. This research not only highlights the potential of specialized LLMs in software development also the pioneer LLM for this domain.

In this paper, we present an empirical study introducing a nuanced evaluation framework for text-to-image (T2I) generative models, applied to human image synthesis. Our framework categorizes evaluations into two distinct groups: first, focusing on image qualities such as aesthetics and realism, and second, examining text conditions through concept coverage and fairness. We introduce an innovative aesthetic score prediction model that assesses the visual appeal of generated images and unveils the first dataset marked with low-quality regions in generated human images to facilitate automatic defect detection. Our exploration into concept coverage probes the model's effectiveness in interpreting and rendering text-based concepts accurately, while our analysis of fairness reveals biases in model outputs, with an emphasis on gender, race, and age. While our study is grounded in human imagery, this dual-faceted approach is designed with the flexibility to be applicable to other forms of image generation, enhancing our understanding of generative models and paving the way to the next generation of more sophisticated, contextually aware, and ethically attuned generative models. We will release our code, the data used for evaluating generative models and the dataset annotated with defective areas soon.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.

北京阿比特科技有限公司