亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Intelligent reflecting surfaces (IRS) have been proposed in millimeter wave (mmWave) and terahertz (THz) systems to achieve both coverage and capacity enhancement, where the design of hybrid precoders, combiners, and the IRS typically relies on channel state information. In this paper, we address the problem of uplink wideband channel estimation for IRS aided multiuser multiple-input single-output (MISO) systems with hybrid architectures. Combining the structure of model driven and data driven deep learning approaches, a hybrid driven learning architecture is devised for joint estimation and learning the properties of the channels. For a passive IRS aided system, we propose a residual learned approximate message passing as a model driven network. A denoising and attention network in the data driven network is used to jointly learn spatial and frequency features. Furthermore, we design a flexible hybrid driven network in a hybrid passive and active IRS aided system. Specifically, the depthwise separable convolution is applied to the data driven network, leading to less network complexity and fewer parameters at the IRS side. Numerical results indicate that in both systems, the proposed hybrid driven channel estimation methods significantly outperform existing deep learning-based schemes and effectively reduce the pilot overhead by about 60% in IRS aided systems.

相關內容

Effectively measuring and modeling the reliability of a trained model is essential to the real-world deployment of monocular depth estimation (MDE) models. However, the intrinsic ill-posedness and ordinal-sensitive nature of MDE pose major challenges to the estimation of uncertainty degree of the trained models. On the one hand, utilizing current uncertainty modeling methods may increase memory consumption and are usually time-consuming. On the other hand, measuring the uncertainty based on model accuracy can also be problematic, where uncertainty reliability and prediction accuracy are not well decoupled. In this paper, we propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions originating from the depth probability volume and its extensions, and to assess it more fairly with more comprehensive metrics. By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability, and can be further improved when combined with ensemble or sampling methods. A series of experiments demonstrate the effectiveness of our methods.

The target sensing/localization performance is fundamentally limited by the line-of-sight link and severe signal attenuation over long distances. This paper considers a challenging scenario where the direct link between the base station (BS) and the target is blocked due to the surrounding blockages and leverages the intelligent reflecting surface (IRS) with some active sensors, termed as \textit{semi-passive IRS}, for localization. To be specific, the active sensors receive echo signals reflected by the target and apply signal processing techniques to estimate the target location. We consider the joint time-of-arrival (ToA) and direction-of-arrival (DoA) estimation for localization and derive the corresponding Cram\'{e}r-Rao bound (CRB), and then a simple ToA/DoA estimator without iteration is proposed. In particular, the relationships of the CRB for ToA/DoA with the number of frames for IRS beam adjustments, number of IRS reflecting elements, and number of sensors are theoretically analyzed and demystified. Simulation results show that the proposed semi-passive IRS architecture provides sub-meter level positioning accuracy even over a long localization range from the BS to the target and also demonstrate a significant localization accuracy improvement compared to the fully passive IRS architecture.

This paper investigates the utilization of simultaneously transmitting and reflecting RIS (STAR-RIS) in supporting joint physical layer security (PLS) and covert communications (CCs) in a multi-antenna millimeter wave (mmWave) system, where the base station (BS) communicates with both covert and security users while defeating eavesdropping by wardens with the help of a STAR-RIS. Specifically, analytical derivations are performed to obtain the closed-form expression of warden's minimum detection error probability (DEP). Furthermore, the asymptotic result of the minimum DEP and the lower bound of the secure rates are derived, considering the practical assumption that BS only knows the statistical channel state information (CSI) between STAR-RIS and the wardens. Subsequently, an optimization problem is formulated with the aim of maximizing the average sum of the covert rate and the minimum secure rate while ensuring the covert requirement and quality of service (QoS) for legal users by jointly optimizing the active and passive beamformers. Due to the strong coupling among variables, an iterative algorithm based on the alternating strategy and the semi-definite relaxation (SDR) method is proposed to solve the non-convex optimization problem. Simulation results indicate that the performance of the proposed STAR-RIS-assisted scheme greatly surpasses that of the conventional RIS scheme, which validates the superiority of STAR-RIS in simultaneously implementing PLS and CCs.

The millimeter-wave (mmWave) communication technology, which employs large-scale antenna arrays, enables inherent sensing capabilities. Simultaneous localization and mapping (SLAM) can utilize channel multipath angle estimates to realize integrated sensing and communication design in 6G communication systems. However, existing works have ignored the significant overhead required by the mmWave beam management when implementing SLAM with angle estimates. This study proposes a joint beam management and SLAM design that utilizes the strong coupling between the radio map and channel multipath for simultaneous beam management, localization, and mapping. In this approach, we first propose a hierarchical sweeping and sensing service design. The path angles are estimated in the hierarchical sweeping, enabling angle-based SLAM with the aid of an inertial measurement unit (IMU) to realize sensing service. Then, feature-aided tracking is proposed that utilizes prior angle information generated from the radio map and IMU. Finally, a switching module is introduced to enable flexible switching between hierarchical sweeping and feature-aided tracking. Simulations show that the proposed joint design can achieve sub-meter level localization and mapping accuracy (with an error < 0.5 m). Moreover, the beam management overhead can be reduced by approximately 40% in different wireless environments.

This paper studies an multi-cluster over-the-air computation (AirComp) system, where an intelligent reflecting surface (IRS) assists the signal transmission from devices to an access point (AP). The clusters are activated to compute heterogeneous functions in a time-division manner. Specifically, two types of IRS beamforming (BF) schemes are proposed to reveal the performancecost tradeoff. One is the cluster-adaptive BF scheme, where each BF pattern is dedicated to one cluster, and the other is the dynamic BF scheme, which is applied to any number of IRS BF patterns. By deeply exploiting their inherent properties, both generic and lowcomplexity algorithms are proposed in which the IRS BF patterns, time and power resource allocation are jointly optimized. Numerical results show that IRS can significantly enhance the function computation performance, and demonstrate that the dynamic IRS BF scheme with half of the total IRS BF patterns can achieve near-optimal performance which can be deemed as a cost-efficient approach for IRS-aided multi-cluster AirComp systems.

The partial information decomposition (PID) framework is concerned with decomposing the information that a set of random variables has with respect to a target variable into three types of components: redundant, synergistic, and unique. Classical information theory alone does not provide a unique way to decompose information in this manner and additional assumptions have to be made. Recently, Kolchinsky proposed a new general axiomatic approach to obtain measures of redundant information, based on choosing an order relation between information sources (equivalently, order between communication channels). In this paper, we exploit this approach to introduce three new measures of redundant information (and the resulting decompositions) based on well-known preorders between channels, thus contributing to the enrichment of the PID landscape. We relate the new decompositions to existing ones, study some of their properties, and provide examples illustrating their novelty. As a side result, we prove that any preorder that satisfies Kolchinsky's axioms yields a decomposition that meets the axioms originally introduced by Williams and Beer when they first propose the PID.

Next-generation wireless networks strive for higher communication rates, ultra-low latency, seamless connectivity, and high-resolution sensing capabilities. To meet these demands, terahertz (THz)-band signal processing is envisioned as a key technology offering wide bandwidth and sub-millimeter wavelength. Furthermore, THz integrated sensing and communications (ISAC) paradigm has emerged jointly access spectrum and reduced hardware costs through a unified platform. To address the challenges in THz propagation, THz-ISAC systems employ extremely large antenna arrays to improve the beamforming gain for communications with high data rates and sensing with high resolution. However, the cost and power consumption of implementing fully digital beamformers are prohibitive. While hybrid analog/digital beamforming can be a potential solution, the use of subcarrier-independent analog beamformers leads to the beam-squint phenomenon where different subcarriers observe distinct directions because of adopting the same analog beamformer across all subcarriers. In this paper, we develop a sparse array architecture for THz-ISAC with hybrid beamforming to provide a cost-effective solution. We analyze the antenna selection problem under beam-squint influence and introduce a manifold optimization approach for hybrid beamforming design. To reduce computational and memory costs, we propose novel algorithms leveraging grouped subarrays, quantized performance metrics, and sequential optimization. These approaches yield a significant reduction in the number of possible subarray configurations, which enables us to devise a neural network with classification model to accurately perform antenna selection.

Superdirective array may achieve an array gain proportional to the square of the number of antennas $M^2$. In the early studies of superdirectivity, little research has been done from wireless communication point of view. To leverage superdirectivity for enhancing the spectral efficiency, this paper investigates multi-user communication systems with superdirective arrays. We first propose a field-coupling-aware (FCA) multi-user channel estimation method, which takes into account the antenna coupling effects. Aiming to maximize the power gain of the target user, we propose multi-user multipath superdirective precoding (SP) as an extension of our prior work on coupling-based superdirective beamforming. Furthermore, to reduce the inter-user interference, we propose interference-nulling superdirective precoding (INSP) as the optimal solution to maximize user power gains while eliminating interference. Then, by taking the ohmic loss into consideration, we further propose a regularized interference-nulling superdirective precoding (RINSP) method. Finally, we discuss the well-known narrow directivity bandwidth issue, and find that it is not a fundamental problem of superdirective arrays in multi-carrier communication systems. Simulation results show our proposed methods outperform the state-of-the-art methods significantly. Interestingly, in the multi-user scenario, an 18-antenna superdirective array can achieve up to a 9-fold increase of spectral efficiency compared to traditional multiple-input multiple-output (MIMO), while simultaneously reducing the array aperture by half.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

北京阿比特科技有限公司