{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a polynomial-time 2-approximation algorithm for the Unrooted Prize-Collecting Forest with $K$ Components (URPCF$_K$) problem. URPCF$_K$ aims to find a forest with exactly $K$ connected components while minimizing both the forest's weight and the penalties incurred by unspanned vertices. Unlike the rooted version RPCF$_K$, where a 2-approximation algorithm exists, solving the unrooted version by guessing roots leads to exponential time complexity for non-constant $K$. To address this challenge, we propose a rootless growing and rootless pruning algorithm. We also apply this algorithm to improve the approximation ratio for the Prize-Collecting Min-Sensor Sweep Cover problem (PCMinSSC) from 8 to 5. Keywords: approximation algorithm, prize-collecting Steiner forest, sweep cover.

相關內容

In this paper, we introduce a new approach for constructing robust well-balanced numerical methods for the one-dimensional Saint-Venant system with and without the Manning friction term. Following the idea presented in [R. Abgrall, Commun. Appl. Math. Comput. 5(2023), pp. 370-402], we first combine the conservative and non-conservative (primitive) formulations of the studied conservative hyperbolic system in a natural way. The solution is globally continuous and described by a combination of point values and average values. The point values and average values will then be evolved by two different forms of PDEs: a conservative version of the cell averages and a possibly non-conservative one for the points. We show how to deal with both the conservative and non-conservative forms of PDEs in a well-balanced manner. The developed schemes are capable of exactly preserving both the still-water and moving-water equilibria. Compared with existing well-balanced methods, this new class of scheme is nonlinear-equations-solver-free. This makes the developed schemes less computationally costly and easier to extend to other models. We demonstrate the behavior of the proposed new scheme on several challenging examples.

This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.

In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.

In this paper, we consider an infinite horizon average reward Markov Decision Process (MDP). Distinguishing itself from existing works within this context, our approach harnesses the power of the general policy gradient-based algorithm, liberating it from the constraints of assuming a linear MDP structure. We propose a policy gradient-based algorithm and show its global convergence property. We then prove that the proposed algorithm has $\tilde{\mathcal{O}}({T}^{3/4})$ regret. Remarkably, this paper marks a pioneering effort by presenting the first exploration into regret-bound computation for the general parameterized policy gradient algorithm in the context of average reward scenarios.

Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of $\sqrt{2}$. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a $(1 + o(1))$-approximation, asymptotically almost surely, and has a running time of $\mathcal{O}(m \log(n))$. The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach.

In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.

In this paper, we propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL) to provide effective and interpretable interventions. Our method leverages DRL to provide expert action recommendations while incorporating ToM modeling to understand users' mental states and predict their future actions, enabling appropriate timing for intervention. To explain interventions, we use counterfactual explanations based on RL's feature importance and users' ToM model structure. Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users. We demonstrate the effectiveness of our approach through a series of crowd-sourcing experiments in a simulated team decision-making task, where our system outperforms control baselines in terms of task performance. Our proposed approach is agnostic to task environment and RL model structure, therefore has the potential to be generalized to a wide range of applications.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司
K$) problem. URPCF 干逼视频无码免费网站,黄色在线观看国产,中文字幕天堂久久五月天 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a polynomial-time 2-approximation algorithm for the Unrooted Prize-Collecting Forest with $K$ Components (URPCF$_K$) problem. URPCF$_K$ aims to find a forest with exactly $K$ connected components while minimizing both the forest's weight and the penalties incurred by unspanned vertices. Unlike the rooted version RPCF$_K$, where a 2-approximation algorithm exists, solving the unrooted version by guessing roots leads to exponential time complexity for non-constant $K$. To address this challenge, we propose a rootless growing and rootless pruning algorithm. We also apply this algorithm to improve the approximation ratio for the Prize-Collecting Min-Sensor Sweep Cover problem (PCMinSSC) from 8 to 5. Keywords: approximation algorithm, prize-collecting Steiner forest, sweep cover.

相關內容

In this paper, we introduce a new approach for constructing robust well-balanced numerical methods for the one-dimensional Saint-Venant system with and without the Manning friction term. Following the idea presented in [R. Abgrall, Commun. Appl. Math. Comput. 5(2023), pp. 370-402], we first combine the conservative and non-conservative (primitive) formulations of the studied conservative hyperbolic system in a natural way. The solution is globally continuous and described by a combination of point values and average values. The point values and average values will then be evolved by two different forms of PDEs: a conservative version of the cell averages and a possibly non-conservative one for the points. We show how to deal with both the conservative and non-conservative forms of PDEs in a well-balanced manner. The developed schemes are capable of exactly preserving both the still-water and moving-water equilibria. Compared with existing well-balanced methods, this new class of scheme is nonlinear-equations-solver-free. This makes the developed schemes less computationally costly and easier to extend to other models. We demonstrate the behavior of the proposed new scheme on several challenging examples.

This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.

In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.

In this paper, we consider an infinite horizon average reward Markov Decision Process (MDP). Distinguishing itself from existing works within this context, our approach harnesses the power of the general policy gradient-based algorithm, liberating it from the constraints of assuming a linear MDP structure. We propose a policy gradient-based algorithm and show its global convergence property. We then prove that the proposed algorithm has $\tilde{\mathcal{O}}({T}^{3/4})$ regret. Remarkably, this paper marks a pioneering effort by presenting the first exploration into regret-bound computation for the general parameterized policy gradient algorithm in the context of average reward scenarios.

Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of $\sqrt{2}$. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a $(1 + o(1))$-approximation, asymptotically almost surely, and has a running time of $\mathcal{O}(m \log(n))$. The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach.

In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.

In this paper, we propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL) to provide effective and interpretable interventions. Our method leverages DRL to provide expert action recommendations while incorporating ToM modeling to understand users' mental states and predict their future actions, enabling appropriate timing for intervention. To explain interventions, we use counterfactual explanations based on RL's feature importance and users' ToM model structure. Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users. We demonstrate the effectiveness of our approach through a series of crowd-sourcing experiments in a simulated team decision-making task, where our system outperforms control baselines in terms of task performance. Our proposed approach is agnostic to task environment and RL model structure, therefore has the potential to be generalized to a wide range of applications.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司
K$ aims to find a forest with exactly $K$ connected components while minimizing both the forest's weight and the penalties incurred by unspanned vertices. Unlike the rooted version RPCF 干逼视频无码免费网站,黄色在线观看国产,中文字幕天堂久久五月天 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a polynomial-time 2-approximation algorithm for the Unrooted Prize-Collecting Forest with $K$ Components (URPCF$_K$) problem. URPCF$_K$ aims to find a forest with exactly $K$ connected components while minimizing both the forest's weight and the penalties incurred by unspanned vertices. Unlike the rooted version RPCF$_K$, where a 2-approximation algorithm exists, solving the unrooted version by guessing roots leads to exponential time complexity for non-constant $K$. To address this challenge, we propose a rootless growing and rootless pruning algorithm. We also apply this algorithm to improve the approximation ratio for the Prize-Collecting Min-Sensor Sweep Cover problem (PCMinSSC) from 8 to 5. Keywords: approximation algorithm, prize-collecting Steiner forest, sweep cover.

相關內容

In this paper, we introduce a new approach for constructing robust well-balanced numerical methods for the one-dimensional Saint-Venant system with and without the Manning friction term. Following the idea presented in [R. Abgrall, Commun. Appl. Math. Comput. 5(2023), pp. 370-402], we first combine the conservative and non-conservative (primitive) formulations of the studied conservative hyperbolic system in a natural way. The solution is globally continuous and described by a combination of point values and average values. The point values and average values will then be evolved by two different forms of PDEs: a conservative version of the cell averages and a possibly non-conservative one for the points. We show how to deal with both the conservative and non-conservative forms of PDEs in a well-balanced manner. The developed schemes are capable of exactly preserving both the still-water and moving-water equilibria. Compared with existing well-balanced methods, this new class of scheme is nonlinear-equations-solver-free. This makes the developed schemes less computationally costly and easier to extend to other models. We demonstrate the behavior of the proposed new scheme on several challenging examples.

This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.

In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.

In this paper, we consider an infinite horizon average reward Markov Decision Process (MDP). Distinguishing itself from existing works within this context, our approach harnesses the power of the general policy gradient-based algorithm, liberating it from the constraints of assuming a linear MDP structure. We propose a policy gradient-based algorithm and show its global convergence property. We then prove that the proposed algorithm has $\tilde{\mathcal{O}}({T}^{3/4})$ regret. Remarkably, this paper marks a pioneering effort by presenting the first exploration into regret-bound computation for the general parameterized policy gradient algorithm in the context of average reward scenarios.

Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of $\sqrt{2}$. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a $(1 + o(1))$-approximation, asymptotically almost surely, and has a running time of $\mathcal{O}(m \log(n))$. The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach.

In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.

In this paper, we propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL) to provide effective and interpretable interventions. Our method leverages DRL to provide expert action recommendations while incorporating ToM modeling to understand users' mental states and predict their future actions, enabling appropriate timing for intervention. To explain interventions, we use counterfactual explanations based on RL's feature importance and users' ToM model structure. Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users. We demonstrate the effectiveness of our approach through a series of crowd-sourcing experiments in a simulated team decision-making task, where our system outperforms control baselines in terms of task performance. Our proposed approach is agnostic to task environment and RL model structure, therefore has the potential to be generalized to a wide range of applications.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司
K$, where a 2-approximation algorithm exists, solving the unrooted version by guessing roots leads to exponential time complexity for non-constant $K$. To address this challenge, we propose a rootless growing and rootless pruning algorithm. We also apply this algorithm to improve the approximation ratio for the Prize-Collecting Min-Sensor Sweep Cover problem (PCMinSSC) from 8 to 5. Keywords: approximation algorithm, prize-collecting Steiner forest, sweep cover. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a polynomial-time 2-approximation algorithm for the Unrooted Prize-Collecting Forest with $K$ Components (URPCF$_K$) problem. URPCF$_K$ aims to find a forest with exactly $K$ connected components while minimizing both the forest's weight and the penalties incurred by unspanned vertices. Unlike the rooted version RPCF$_K$, where a 2-approximation algorithm exists, solving the unrooted version by guessing roots leads to exponential time complexity for non-constant $K$. To address this challenge, we propose a rootless growing and rootless pruning algorithm. We also apply this algorithm to improve the approximation ratio for the Prize-Collecting Min-Sensor Sweep Cover problem (PCMinSSC) from 8 to 5. Keywords: approximation algorithm, prize-collecting Steiner forest, sweep cover.

相關內容

In this paper, we introduce a new approach for constructing robust well-balanced numerical methods for the one-dimensional Saint-Venant system with and without the Manning friction term. Following the idea presented in [R. Abgrall, Commun. Appl. Math. Comput. 5(2023), pp. 370-402], we first combine the conservative and non-conservative (primitive) formulations of the studied conservative hyperbolic system in a natural way. The solution is globally continuous and described by a combination of point values and average values. The point values and average values will then be evolved by two different forms of PDEs: a conservative version of the cell averages and a possibly non-conservative one for the points. We show how to deal with both the conservative and non-conservative forms of PDEs in a well-balanced manner. The developed schemes are capable of exactly preserving both the still-water and moving-water equilibria. Compared with existing well-balanced methods, this new class of scheme is nonlinear-equations-solver-free. This makes the developed schemes less computationally costly and easier to extend to other models. We demonstrate the behavior of the proposed new scheme on several challenging examples.

This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.

In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.

In this paper, we consider an infinite horizon average reward Markov Decision Process (MDP). Distinguishing itself from existing works within this context, our approach harnesses the power of the general policy gradient-based algorithm, liberating it from the constraints of assuming a linear MDP structure. We propose a policy gradient-based algorithm and show its global convergence property. We then prove that the proposed algorithm has $\tilde{\mathcal{O}}({T}^{3/4})$ regret. Remarkably, this paper marks a pioneering effort by presenting the first exploration into regret-bound computation for the general parameterized policy gradient algorithm in the context of average reward scenarios.

Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of $\sqrt{2}$. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a $(1 + o(1))$-approximation, asymptotically almost surely, and has a running time of $\mathcal{O}(m \log(n))$. The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach.

In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.

In this paper, we propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL) to provide effective and interpretable interventions. Our method leverages DRL to provide expert action recommendations while incorporating ToM modeling to understand users' mental states and predict their future actions, enabling appropriate timing for intervention. To explain interventions, we use counterfactual explanations based on RL's feature importance and users' ToM model structure. Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users. We demonstrate the effectiveness of our approach through a series of crowd-sourcing experiments in a simulated team decision-making task, where our system outperforms control baselines in terms of task performance. Our proposed approach is agnostic to task environment and RL model structure, therefore has the potential to be generalized to a wide range of applications.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司