亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.

相關內容

In this paper, we introduce HoughToRadon Transform layer, a novel layer designed to improve the speed of neural networks incorporated with Hough Transform to solve semantic image segmentation problems. By placing it after a Hough Transform layer, "inner" convolutions receive modified feature maps with new beneficial properties, such as a smaller area of processed images and parameter space linearity by angle and shift. These properties were not presented in Hough Transform alone. Furthermore, HoughToRadon Transform layer allows us to adjust the size of intermediate feature maps using two new parameters, thus allowing us to balance the speed and quality of the resulting neural network. Our experiments on the open MIDV-500 dataset show that this new approach leads to time savings in document segmentation tasks and achieves state-of-the-art 97.7% accuracy, outperforming HoughEncoder with larger computational complexity.

In this paper, we propose a continuous-time lidar-inertial odometry (CT-LIO) system named SLICT2, which promotes two main insights. One, contrary to conventional wisdom, CT-LIO algorithm can be optimized by linear solvers in only a few iterations, which is more efficient than commonly used nonlinear solvers. Two, CT-LIO benefits more from the correct association than the number of iterations. Based on these ideas, we implement our method with a customized solver where the feature association process is performed immediately after each incremental step, and the solution can converge within a few iterations. Our implementation can achieve real-time performance with a high density of control points while yielding competitive performance in highly dynamical motion scenarios. We demonstrate the advantages of our method by comparing with other existing state-of-the-art CT-LIO methods. The source code will be released for the benefit of the community.

This paper considers an active reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) system. We aim to maximize radar signal-to-interference-plus-noise-ratio (SINR) by jointly optimizing the beamforming matrix at the dual-function radar-communication (DFRC) base station (BS) and the reflecting coefficients at the active RIS subject to the quality of service (QoS) constraints of communication users (UE) and the transmit power constraints of active RIS and DFRC BS. To tackle the optimization problem, the majorization-minimization (MM) algorithm is applied to address the nonconvex radar SINR objective function, and the resulting quartic problem is solved by developing an semidefinite relaxation (SDR)-based approach. Moreover, we derive the scaling order of the radar SINR with a large number of reflecting elements. Next, the transmit power allocation problem and the deployment strategy of the active RIS are studied with a moderate number of reflecting elements. Finally, we validate the potential of the active RIS in ISAC systems compared to passive RIS. Additionally, we deliberate on several open problems that remain for future research.

In this paper, we introduce a multi-label lazy learning approach to deal with automatic semantic indexing in large document collections in the presence of complex and structured label vocabularies with high inter-label correlation. The proposed method is an evolution of the traditional k-Nearest Neighbors algorithm which uses a large autoencoder trained to map the large label space to a reduced size latent space and to regenerate the predicted labels from this latent space. We have evaluated our proposal in a large portion of the MEDLINE biomedical document collection which uses the Medical Subject Headings (MeSH) thesaurus as a controlled vocabulary. In our experiments we propose and evaluate several document representation approaches and different label autoencoder configurations.

In this paper we generalize and extend an idea of low-rank adaptation (LoRA) of large language models (LLMs) based on Transformer architecture. Widely used LoRA-like methods of fine-tuning LLMs are based on matrix factorization of gradient update. We introduce LoTR, a novel approach for parameter-efficient fine-tuning of LLMs which represents a gradient update to parameters in a form of tensor decomposition. Low-rank adapter for each layer is constructed as a product of three matrices, and tensor structure arises from sharing left and right multipliers of this product among layers. Simultaneous compression of a sequence of layers with low-rank tensor representation allows LoTR to archive even better parameter efficiency then LoRA especially for deep models. Moreover, the core tensor does not depend on original weight dimension and can be made arbitrary small, which allows for extremely cheap and fast downstream fine-tuning.

This paper investigates the integration of beyond-diagonal reconfigurable intelligent surfaces (BD-RISs) into cell-free massive multiple-input multiple-output (CF-mMIMO) systems, focusing on applications involving simultaneous wireless information and power transfer (SWIPT). The system supports concurrently two user groups: information users (IUs) and energy users (EUs). A BD-RIS is employed to enhance the wireless power transfer (WPT) directed towards the EUs. To comprehensively evaluate the system's performance, we present an analytical framework for the spectral efficiency (SE) of IUs and the average harvested energy (HE) of EUs in the presence of spatial correlation among the BD-RIS elements and for a non-linear energy harvesting circuit. Our findings offer important insights into the transformative potential of BD-RIS, setting the stage for the development of more efficient and effective SWIPT networks. Finally, incorporating a heuristic scattering matrix design at the BD-RIS results in a substantial improvement compared to the scenario with random scattering matrix design.

In this paper, we explore an integrated sensing and communication (ISAC) system with backscattering RFID tags. In this setup, an access point employs a communication beam to serve a user while leveraging a sensing beam to detect an RFID tag. Under the total transmit power constraint of the system, our objective is to design sensing and communication beams by considering the tag detection and communication requirements. First, we adopt zero-forcing to design the beamforming vectors, followed by solving a convex optimization problem to determine the power allocation between sensing and communication. Then, we study a joint beamforming design problem with the goal of minimizing the total transmit power while satisfying the tag detection and communication requirements. To resolve this, we re-formulate the non-convex constraints into convex second-order cone constraints. The simulation results demonstrate that, under different communication SINR requirements, joint beamforming optimization outperforms the zero-forcing-based method in terms of achievable detection distance, offering a promising approach for the ISAC-backscattering systems.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司