Background: The novel coronavirus, COVID-19, was first detected in the United States in January 2020. To curb the spread of the disease in mid-March, different states issued mandatory stay-at-home (SAH) orders. These nonpharmaceutical interventions were mandated based on prior experiences, such as the 1918 influenza epidemic. Hence, we decided to study the impact of restrictions on mobility on reducing COVID-19 transmission. Methods: We designed an ecological time series study with our exposure variable as Mobility patterns in the state of Maryland for March- December 2020 and our outcome variable as the COVID-19 hospitalizations for the same period. We built an Extreme Gradient Boosting (XGBoost) ensemble machine learning model and regressed the lagged COVID-19 hospitalizations with Mobility volume for different regions of Maryland. Results: We found an 18% increase in COVID-19 hospitalizations when mobility was increased by a factor of five, similarly a 43% increase when mobility was further increased by a factor of ten. Conclusion: The findings of our study demonstrated a positive linear relationship between mobility and the incidence of COVID-19 cases. These findings are partially consistent with other studies suggesting the benefits of mobility restrictions. Although more detailed approach is needed to precisely understand the benefits and limitations of mobility restrictions as part of a response to the COVID-19 pandemic.
Created by volunteers since 2004, OpenStreetMap (OSM) is a global geographic database available under an open access license and currently used by a multitude of actors worldwide. This chapter describes the role played by OSM during the early months (from January to July 2020) of the ongoing COVID-19 pandemic, which - in contrast to past disasters and epidemics - is a global event impacting both developed and developing countries. A large number of COVID-19-related OSM use cases were collected and grouped into a number of research frameworks which are analyzed separately: dashboards and services simply using OSM as a basemap, applications using raw OSM data, initiatives to collect new OSM data, imports of authoritative data into OSM, and traditional academic research on OSM in the COVID-19 response. The wealth of examples provided in the chapter, including an analysis of OSM tile usage in two countries (Italy and China) deeply affected in the earliest months of 2020, prove that OSM has been and still is heavily used to address the COVID-19 crisis, although with types and mechanisms that are often different depending on the affected area or country and the related communities.
Digital technologies that help us take care of our dogs are becoming more widespread. Yet, little research explores what the role of technology in the human-dog relationship should be. We conducted a mixed-method study incorporating quantitative and qualitative thematic analysis of 155 UK dog owners reflecting on their daily routines and technology's role in it, disentangling the what-where-why of interspecies routines and activities, technological desires, and rationales for technological support across common human-dog activities. We found that increasingly entangled daily routines lead to close multi-species households where dog owners conceptualize technology as having a role to support them in giving care to their dogs. When confronted with the role of technology across various activities, only chores like cleaning up after our dogs lead to largely positive considerations, while activities that benefit us like walking together lead to largely negative considerations. For other activities, whether playing, training, or feeding, attitudes remain diverse. In general, across all activities both a nightmare scenario of technology taking the human's role and in doing so disentangling the human-dog bond, as well as a dream scenario of technology augmenting our abilities arise. We argue that the current trajectory of digital technology for pets towards allowing dog owners to interact with their dogs while away (feeding, playing, and so on) is an example of this nightmare scenario becoming reality, and that it is important to redirect this trajectory to one of technology predominantly supporting us in becoming better and more informed caregivers.
Given the severe impact of COVID-19 on several societal levels, it is of crucial importance to model the impact of restriction measures on the pandemic evolution, so that governments are able to take informed decisions. Even though there have been countless attempts to propose diverse models since the raise of the outbreak, the increase in data availability and start of vaccination campaigns calls for updated models and studies. Furthermore, most of the works are focused on a very particular place or application and we strive to attain a more general model, resorting to data from different countries. In particular, we compare Great Britain and Israel, two highly different scenarios in terms of vaccination plans and social structure. We build a network-based model, complex enough to model different scenarios of government-mandated restrictions, but generic enough to be applied to any population. To ease the computational load we propose a decomposition strategy for our model.
The paper is devoted to the study of the model fairness and process fairness of the Russian demographic dataset by making predictions of divorce of the 1st marriage, religiosity, 1st employment and completion of education. Our goal was to make classifiers more equitable by reducing their reliance on sensitive features while increasing or at least maintaining their accuracy. We took inspiration from "dropout" techniques in neural-based approaches and suggested a model that uses "feature drop-out" to address process fairness. To evaluate a classifier's fairness and decide the sensitive features to eliminate, we used "LIME Explanations". This results in a pool of classifiers due to feature dropout whose ensemble has been shown to be less reliant on sensitive features and to have improved or no effect on accuracy. Our empirical study was performed on four families of classifiers (Logistic Regression, Random Forest, Bagging, and Adaboost) and carried out on real-life dataset (Russian demographic data derived from Generations and Gender Survey), and it showed that all of the models became less dependent on sensitive features (such as gender, breakup of the 1st partnership, 1st partnership, etc.) and showed improvements or no impact on accuracy
The effective control of the COVID-19 pandemic is one the most challenging issues of nowadays. The design of optimal control policies is perplexed from a variety of social, political, economical and epidemiological factors. Here, based on epidemiological data reported in recent studies for the Italian region of Lombardy, which experienced one of the largest and most devastating outbreaks in Europe during the first wave of the pandemic, we address a probabilistic model predictive control (PMPC) approach for the modelling and the systematic study of what if scenarios of the social distancing in a retrospective analysis for the first wave of the pandemic in Lombardy. The performance of the proposed PMPC scheme was assessed based on simulations of a compartmental model that was developed to quantify the uncertainty in the level of the asymptomatic cases in the population, and the synergistic effect of social distancing in various activities, and public awareness campaign prompting people to adopt cautious behaviors to reduce the risk of disease transmission. The PMPC scheme takes into account the social mixing effect, i.e. the effect of the various activities in the potential transmission of the disease. The proposed approach demonstrates the utility of a PMPC approach in addressing COVID-19 transmission and implementing public relaxation policies.
To reduce the spread of misinformation, social media platforms may take enforcement actions against offending content, such as adding informational warning labels, reducing distribution, or removing content entirely. However, both their actions and their inactions have been controversial and plagued by allegations of partisan bias. The controversy in part can be explained by a lack of clarity around what actions should be taken, as they may not neatly reduce to questions of factual accuracy. When decisions are contested, the legitimacy of decision-making processes becomes crucial to public acceptance. Platforms have tried to legitimize their decisions by following well-defined procedures through rules and codebooks. In this paper, we consider an alternate source of legitimacy -- the will of the people. Surprisingly little is known about what ordinary people want the platforms to do about specific content. We provide empirical evidence about lay raters' preferences for platform actions on 368 news articles. Our results confirm that on many items there is no clear consensus on which actions to take. There is no partisan difference in terms of how many items deserve platform actions but liberals do prefer somewhat more action on content from conservative sources, and vice versa. We find a clear hierarchy of perceived severity, with inform being the least severe action, followed by reduce, and then remove. We also find that judgments about two holistic properties, misleadingness and harm, could serve as an effective proxy to determine what actions would be approved by a majority of raters. We conclude with the promise of the will of the people while acknowledging the practical details that would have to be worked out.
Predictive models for clinical outcomes that are accurate on average in a patient population may underperform drastically for some subpopulations, potentially introducing or reinforcing inequities in care access and quality. Model training approaches that aim to maximize worst-case model performance across subpopulations, such as distributionally robust optimization (DRO), attempt to address this problem without introducing additional harms. We conduct a large-scale empirical study of DRO and several variations of standard learning procedures to identify approaches for model development and selection that consistently improve disaggregated and worst-case performance over subpopulations compared to standard approaches for learning predictive models from electronic health records data. In the course of our evaluation, we introduce an extension to DRO approaches that allows for specification of the metric used to assess worst-case performance. We conduct the analysis for models that predict in-hospital mortality, prolonged length of stay, and 30-day readmission for inpatient admissions, and predict in-hospital mortality using intensive care data. We find that, with relatively few exceptions, no approach performs better, for each patient subpopulation examined, than standard learning procedures using the entire training dataset. These results imply that when it is of interest to improve model performance for patient subpopulations beyond what can be achieved with standard practices, it may be necessary to do so via data collection techniques that increase the effective sample size or reduce the level of noise in the prediction problem.
The increasing critical dependencies on Internetof-Things (IoT) have raised security concerns; its application on the critical infrastructures (CIs) for power generation has come under massive cyber-attack over the years. Prior research efforts to understand cybersecurity from Cyber Situational Awareness (CSA) perspective fail to critically consider the various Cyber Situational Awareness (CSA) security vulnerabilities from a human behavioural perspective in line with the CI. This study evaluates CSA elements to predict cyber-attacks in the power generation sector. Data for this research article was collected from IPPs using the survey method. The analysis method was employed through Partial Least Squares Structural Equation Modeling (PLS-SEM) to assess the proposed model. The results revealed negative effects on people and cyber-attack, but significant in predicting cyber-attacks. The study also indicated that information handling is significant and positively influences cyber-attack. The study also reveals no mediation effect between the association of People and Attack and Information and Attack. It could result from an effective cyber security control implemented by the IPPs. Finally, the study also shows no sign of network infrastructure cyber-attack predictions. The reasons could be because managers of IPPs had adequate access policies and security measures in place.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.