亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study investigates the interplay among social demographics, built environment characteristics, and environmental hazard exposure features in determining community level cancer prevalence. Utilizing data from five Metropolitan Statistical Areas in the United States: Chicago, Dallas, Houston, Los Angeles, and New York, the study implemented an XGBoost machine learning model to predict the extent of cancer prevalence and evaluate the importance of different features. Our model demonstrates reliable performance, with results indicating that age, minority status, and population density are among the most influential factors in cancer prevalence. We further explore urban development and design strategies that could mitigate cancer prevalence, focusing on green space, developed areas, and total emissions. Through a series of experimental evaluations based on causal inference, the results show that increasing green space and reducing developed areas and total emissions could alleviate cancer prevalence. The study and findings contribute to a better understanding of the interplay among urban features and community health and also show the value of interpretable machine learning models for integrated urban design to promote public health. The findings also provide actionable insights for urban planning and design, emphasizing the need for a multifaceted approach to addressing urban health disparities through integrated urban design strategies.

相關內容

As the study of graph neural networks becomes more intensive and comprehensive, their robustness and security have received great research interest. The existing global attack methods treat all nodes in the graph as their attack targets. Although existing methods have achieved excellent results, there is still considerable space for improvement. The key problem is that the current approaches rigidly follow the definition of global attacks. They ignore an important issue, i.e., different nodes have different robustness and are not equally resilient to attacks. From a global attacker's view, we should arrange the attack budget wisely, rather than wasting them on highly robust nodes. To this end, we propose a totally new method named partial graph attack (PGA), which selects the vulnerable nodes as attack targets. First, to select the vulnerable items, we propose a hierarchical target selection policy, which allows attackers to only focus on easy-to-attack nodes. Then, we propose a cost-effective anchor-picking policy to pick the most promising anchors for adding or removing edges, and a more aggressive iterative greedy-based attack method to perform more efficient attacks. Extensive experimental results demonstrate that PGA can achieve significant improvements in both attack effect and attack efficiency compared to other existing graph global attack methods.

The popularity of Metaverse as an entertainment, social, and work platform has led to a great need for seamless avatar integration in the virtual world. In Metaverse, avatars must be updated and rendered to reflect users' behaviour. Achieving real-time synchronization between the virtual bilocation and the user is complex, placing high demands on the Metaverse Service Provider (MSP)'s rendering resource allocation scheme. To tackle this issue, we propose a semantic communication framework that leverages contest theory to model the interactions between users and MSPs and determine optimal resource allocation for each user. To reduce the consumption of network resources in wireless transmission, we use the semantic communication technique to reduce the amount of data to be transmitted. Under our simulation settings, the encoded semantic data only contains 51 bytes of skeleton coordinates instead of the image size of 8.243 megabytes. Moreover, we implement Deep Q-Network to optimize reward settings for maximum performance and efficient resource allocation. With the optimal reward setting, users are incentivized to select their respective suitable uploading frequency, reducing down-sampling loss due to rendering resource constraints by 66.076\% compared with the traditional average distribution method. The framework provides a novel solution to resource allocation for avatar association in VR environments, ensuring a smooth and immersive experience for all users.

Image reconstruction and captioning from brain activity evoked by visual stimuli allow researchers to further understand the connection between the human brain and the visual perception system. While deep generative models have recently been employed in this field, reconstructing realistic captions and images with both low-level details and high semantic fidelity is still a challenging problem. In this work, we propose UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion Model from Human Brain Activity. For the first time, we unify image reconstruction and captioning from visual-evoked functional magnetic resonance imaging (fMRI) through a latent diffusion model termed Versatile Diffusion. Specifically, we transform fMRI voxels into text and image latent for low-level information and guide the backward diffusion process through fMRI-based image and text conditions derived from CLIP to generate realistic captions and images. UniBrain outperforms current methods both qualitatively and quantitatively in terms of image reconstruction and reports image captioning results for the first time on the Natural Scenes Dataset (NSD) dataset. Moreover, the ablation experiments and functional region-of-interest (ROI) analysis further exhibit the superiority of UniBrain and provide comprehensive insight for visual-evoked brain decoding.

The key innovation of our analytical method, CaRT, lies in establishing a new hierarchical, distributed architecture to guarantee the safety and robustness of a given learning-based motion planning policy. First, in a nominal setting, the analytical form of our CaRT safety filter formally ensures safe maneuvers of nonlinear multi-agent systems, optimally with minimal deviation from the learning-based policy. Second, in off-nominal settings, the analytical form of our CaRT robust filter optimally tracks the certified safe trajectory, generated by the previous layer in the hierarchy, the CaRT safety filter. We show using contraction theory that CaRT guarantees safety and the exponential boundedness of the trajectory tracking error, even under the presence of deterministic and stochastic disturbance. Also, the hierarchical nature of CaRT enables enhancing its robustness for safety just by its superior tracking to the certified safe trajectory, thereby making it suitable for off-nominal scenarios with large disturbances. This is a major distinction from conventional safety function-driven approaches, where the robustness originates from the stability of a safe set, which could pull the system over-conservatively to the interior of the safe set. Our log-barrier formulation in CaRT allows for its distributed implementation in multi-agent settings. We demonstrate the effectiveness of CaRT in several examples of nonlinear motion planning and control problems, including optimal, multi-spacecraft reconfiguration.

This paper studies the performance of the spectral method in the estimation and uncertainty quantification of the unobserved preference scores of compared entities in a very general and more realistic setup in which the comparison graph consists of hyper-edges of possible heterogeneous sizes and the number of comparisons can be as low as one for a given hyper-edge. Such a setting is pervasive in real applications, circumventing the need to specify the graph randomness and the restrictive homogeneous sampling assumption imposed in the commonly-used Bradley-Terry-Luce (BTL) or Plackett-Luce (PL) models. Furthermore, in the scenarios when the BTL or PL models are appropriate, we unravel the relationship between the spectral estimator and the Maximum Likelihood Estimator (MLE). We discover that a two-step spectral method, where we apply the optimal weighting estimated from the equal weighting vanilla spectral method, can achieve the same asymptotic efficiency as the MLE. Given the asymptotic distributions of the estimated preference scores, we also introduce a comprehensive framework to carry out both one-sample and two-sample ranking inferences, applicable to both fixed and random graph settings. It is noteworthy that it is the first time effective two-sample rank testing methods are proposed. Finally, we substantiate our findings via comprehensive numerical simulations and subsequently apply our developed methodologies to perform statistical inferences on statistics journals and movie rankings.

In the third round of the NIST Post-Quantum Cryptography standardization project, the focus is on optimizing software and hardware implementations of candidate schemes. The winning schemes are CRYSTALS Kyber and CRYSTALS Dilithium, which serve as a Key Encapsulation Mechanism (KEM) and Digital Signature Algorithm (DSA), respectively. This study utilizes the TaPaSCo open-source framework to create hardware building blocks for both schemes using High-level Synthesis (HLS) from minimally modified ANSI C software reference implementations across all security levels. Additionally, a generic TaPaSCo host runtime application is developed in Rust to verify their functionality through the standard NIST interface, utilizing the corresponding Known Answer Test mechanism on actual hardware. Building on this foundation, the communication overhead for TaPaSCo hardware accelerators on PCIe-connected FPGA devices is evaluated and compared with previous work and optimized AVX2 software reference implementations. The results demonstrate the feasibility of verifying and evaluating the performance of Post-Quantum Cryptography accelerators on real hardware using TaPaSCo. Furthermore, the off-chip accelerator communication overhead of the NIST standard interface is measured, which, on its own, outweighs the execution wall clock time of the optimized software reference implementation of Kyber at Security Level 1.

We study challenges using reinforcement learning in controlling energy systems, where apart from performance requirements, one has additional safety requirements such as avoiding blackouts. We detail how these safety requirements in real-time temporal logic can be strengthened via discretization into linear temporal logic (LTL), such that the satisfaction of the LTL formulae implies the satisfaction of the original safety requirements. The discretization enables advanced engineering methods such as synthesizing shields for safe reinforcement learning as well as formal verification, where for statistical model checking, the probabilistic guarantee acquired by LTL model checking forms a lower bound for the satisfaction of the original real-time safety requirements.

Current talking face generation methods mainly focus on speech-lip synchronization. However, insufficient investigation on the facial talking style leads to a lifeless and monotonous avatar. Most previous works fail to imitate expressive styles from arbitrary video prompts and ensure the authenticity of the generated video. This paper proposes an unsupervised variational style transfer model (VAST) to vivify the neutral photo-realistic avatars. Our model consists of three key components: a style encoder that extracts facial style representations from the given video prompts; a hybrid facial expression decoder to model accurate speech-related movements; a variational style enhancer that enhances the style space to be highly expressive and meaningful. With our essential designs on facial style learning, our model is able to flexibly capture the expressive facial style from arbitrary video prompts and transfer it onto a personalized image renderer in a zero-shot manner. Experimental results demonstrate the proposed approach contributes to a more vivid talking avatar with higher authenticity and richer expressiveness.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

北京阿比特科技有限公司