亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Flooding is one of the most disruptive and costliest climate-related disasters and presents an escalating threat to population health due to climate change and urbanization patterns. Previous studies have investigated the consequences of flood exposures on only a handful of health outcomes and focus on a single flood event or affected region. To address this gap, we conducted a nationwide, multi-decade analysis of the impacts of severe floods on a wide range of health outcomes in the United States by linking a novel satellite-based high-resolution flood exposure database with Medicare cause-specific hospitalization records over the period 2000- 2016. Using a self-matched study design with a distributed lag model, we examined how cause-specific hospitalization rates deviate from expected rates during and up to four weeks after severe flood exposure. Our results revealed that risk of hospitalization was consistently elevated during and for at least four weeks following severe flood exposure for nervous system diseases (3.5 %; 95 % confidence interval [CI]: 0.6 %, 6.4 %), skin and subcutaneous tissue diseases (3.4 %; 95 % CI: 0.3 %, 6.7 %), and injury and poisoning (1.5 %; 95 % CI: -0.07 %, 3.2 %). Increases in hospitalization rate for these causes, musculoskeletal system diseases, and mental health-related impacts varied based on proportion of Black residents in each ZIP Code. Our findings demonstrate the need for targeted preparedness strategies for hospital personnel before, during, and after severe flooding.

相關內容

一款腦力訓(xun)練應用。

This work considers the convergence of GMRES for non-singular problems. GMRES is interpreted as the GCR method which allows for simple proofs of the convergence estimates. Preconditioning and weighted norms within GMRES are considered. The objective is to provide a way of choosing the preconditioner and GMRES norm that ensure fast convergence. The main focus of the article is on Hermitian preconditioning (even for non-Hermitian problems). It is proposed to choose a Hermitian preconditioner H and to apply GMRES in the inner product induced by H. If moreover, the problem matrix A is positive definite, then a new convergence bound is proved that depends only on how well H preconditions the Hermitian part of A, and on how non-Hermitian A is. In particular, if a scalable preconditioner is known for the Hermitian part of A, then the proposed method is also scalable. This result is illustrated numerically.

Despite recent attention and exploration of depth for various tasks, it is still an unexplored modality for weakly-supervised object detection (WSOD). We propose an amplifier method for enhancing the performance of WSOD by integrating depth information. Our approach can be applied to any WSOD method based on multiple-instance learning, without necessitating additional annotations or inducing large computational expenses. Our proposed method employs a monocular depth estimation technique to obtain hallucinated depth information, which is then incorporated into a Siamese WSOD network using contrastive loss and fusion. By analyzing the relationship between language context and depth, we calculate depth priors to identify the bounding box proposals that may contain an object of interest. These depth priors are then utilized to update the list of pseudo ground-truth boxes, or adjust the confidence of per-box predictions. Our proposed method is evaluated on six datasets (COCO, PASCAL VOC, Conceptual Captions, Clipart1k, Watercolor2k, and Comic2k) by implementing it on top of two state-of-the-art WSOD methods, and we demonstrate a substantial enhancement in performance.

Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the very limited availability of known altermagnetic materials~(e.g., 14 confirmed materials) hinders the study of such properties. Hence, discovering more types of altermagnetic materials is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next generation information technologies, e.g., storage devices and high-sensitivity sensors. Here, we report 25 new altermagnetic materials that cover metals, semiconductors, and insulators, discovered by an AI search engine unifying symmetry analysis, graph neural network pre-training, optimal transport theory, and first-principles electronic structure calculation. The wide range of electronic structural characteristics reveals that various innovative physical properties manifest in these newly discovered altermagnetic materials, e.g., anomalous Hall effect, anomalous Kerr effect, and topological property. Noteworthy, we discovered 8 $i$-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of altermagnetic materials.

Theory of Mind (ToM) is a fundamental cognitive architecture that endows humans with the ability to attribute mental states to others. Humans infer the desires, beliefs, and intentions of others by observing their behavior and, in turn, adjust their actions to facilitate better interpersonal communication and team collaboration. In this paper, we investigated trust-aware robot policy with the theory of mind in a multiagent setting where a human collaborates with a robot against another human opponent. We show that by only focusing on team performance, the robot may resort to the reverse psychology trick, which poses a significant threat to trust maintenance. The human's trust in the robot will collapse when they discover deceptive behavior by the robot. To mitigate this problem, we adopt the robot theory of mind model to infer the human's trust beliefs, including true belief and false belief (an essential element of ToM). We designed a dynamic trust-aware reward function based on different trust beliefs to guide the robot policy learning, which aims to balance between avoiding human trust collapse due to robot reverse psychology. The experimental results demonstrate the importance of the ToM-based robot policy for human-robot trust and the effectiveness of our robot ToM-based robot policy in multiagent interaction settings.

The ongoing change in Earth`s climate is causing an increase in the frequency and severity of climate-related hazards, for example, from coastal flooding, riverine flooding, and tropical cyclones. There is currently an urgent need to quantify the potential impacts of these events on infrastructure and users, especially for hitherto neglected infrastructure sectors, such as telecommunications, particularly given our increasing dependence on digital technologies. In this analysis a global assessment is undertaken, quantifying the number of mobile cells vulnerable to climate hazards using open crowdsourced data equating to 7.6 million 2G, 3G, 4G and 5G assets. For a 0.01% annual probability event under a high emissions scenario (RCP8.5), the number of affected cells is estimated at 2.26 million for tropical cyclones, equating to USD 1.01 billion in direct damage (an increase against the historical baseline of 14% and 44%, respectively). Equally, for coastal flooding the number of potentially affected cells for an event with a 0.01% annual probability under RCP8.5 is 109.9 thousand, equating to direct damage costs of USD 2.69 billion (an increase against the baseline of 70% and 78%, respectively). The findings demonstrate the need for risk analysts to include mobile communications (and telecommunications more broadly) in future critical national infrastructure assessments. Indeed, this paper contributes a proven assessment methodology to the literature for use in future research for assessing this critical infrastructure sector.

We consider the problem of solving a family of parametric mixed-integer linear optimization problems where some entries in the input data change. We introduce the concept of cutting-plane layer (CPL), i.e., a differentiable cutting-plane generator mapping the problem data and previous iterates to cutting planes. We propose a CPL implementation to generate split cuts, and by combining several CPLs, we devise a differentiable cutting-plane algorithm that exploits the repeated nature of parametric instances. In an offline phase, we train our algorithm by updating the internal parameters controlling the CPLs, thus altering cut generation. Once trained, our algorithm computes, with predictable execution times and a fixed number of cuts, solutions with low integrality gaps. Preliminary computational tests show that our algorithm generalizes on unseen instances and captures underlying parametric structures.

Convex relaxations are a key component of training and certifying provably safe neural networks. However, despite substantial progress, a wide and poorly understood accuracy gap to standard networks remains, raising the question of whether this is due to fundamental limitations of convex relaxations. Initial work investigating this question focused on the simple and widely used IBP relaxation. It revealed that some univariate, convex, continuous piecewise linear (CPWL) functions cannot be encoded by any ReLU network such that its IBP-analysis is precise. To explore whether this limitation is shared by more advanced convex relaxations, we conduct the first in-depth study on the expressive power of ReLU networks across all commonly used convex relaxations. We show that: (i) more advanced relaxations allow a larger class of univariate functions to be expressed as precisely analyzable ReLU networks, (ii) more precise relaxations can allow exponentially larger solution spaces of ReLU networks encoding the same functions, and (iii) even using the most precise single-neuron relaxations, it is impossible to construct precisely analyzable ReLU networks that express multivariate, convex, monotone CPWL functions.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司